Evaluating conversion coefficients using BrIcc

T. Kibédi
Department of Nuclear Physics Australian National University Canberra, Australia
Tibor.Kibedi@anu.edu.au

Outline

EM processes

- History of measuring and calculating ICC's
- BrIcc-conversion electron calculations
- EO electronic factors

Electron positron pair conversion
Some comments on obtaining, using and deducing ICC

- BrIcc/BrIccS/BrccG/BrIccMixing/BrIccEmis

ANU HIAS
NEC 14UD tandem electrostatic accelerator (1975)

HV: up to 15.85 MV Intensity: ~1 $\mu \mathrm{A}$ Beam pulsing:

1 ns ON \& 106 ns to 1 s OFF

Research areas
> Nuclear Structure (γ-ray, conversion electron spectroscopy, hyperfine interactions)
> Nuclear Reaction Dynamics

- Accelerator Mass Spectrometry

Super-E: 2.1 tesla solenoid to transport up to $15 \mathrm{MeV} \beta$-rays
\square Operational since 1991; CE and electron-positron pair measurements
[2 loops absorber system: complete suppression of γ - and X-rays
\square Si(Li) array in sum-coincidences: FWHM < 10 keV energy resolution at 7.65 MeV

Well defined electron transport: high accuracy in intensity measurements

Recent highlights
\square Carbon production in the universe
PRL 125 (2020) 182701
PRC 102 (2020) 024320

- Searching for EO in ${ }^{24} \mathrm{Mg},{ }^{40} \mathrm{Ca}$, $50,52 \mathrm{Cr}, 54,56 \mathrm{Fe}, 58,60,62 \mathrm{Ni}$
PLB 779 (2018) 396
PRC 99 (2019) 024306
EPJ Web of Conf. 232 (2020) 04004

Electromagnetic Decay Processes

EM decay: energy and momentum carried away

Selection rules (πL)

Transition probability

$$
\lambda_{T}=\lambda_{Y}+\lambda_{K}+\lambda_{L}+\lambda_{M} \ldots . . .+\lambda_{P F}
$$

Conversion coefficient

$$
\begin{aligned}
& \alpha_{C E, P F}=\lambda_{C E, P F} / \lambda_{\gamma} \\
& \lambda_{C E, P F}=\lambda_{\gamma} \times \alpha_{C E, P F}
\end{aligned}
$$

Energetics

Gamma $E_{\gamma}=E_{i}-E_{f}+T_{r}$
CE
$E_{C E, i}=E_{i}-E_{f}-E_{B E, i}+T_{r}$
PF $\quad E^{+}+E^{-}=E_{i}-E_{f}-2 m_{0} c^{2}+T_{r}$

Experiments over 60 years

T. Kibédi, ANU

Calculations over 60 years

BrIcc - Calculations of conversion coefficients

I.M. Band, et al., ADNDT 81 (2002) 1. (RAINE code)
S. Raman, et al., PRC 66 (2002) 044312 (overview of the theoretical calculations)

Physical model

\square Calculations up to the first nonvanishing order of the perturbation theory
Atomic field model
\square One-electron approximation
\square Free neutral atom
\square Screening of the nuclear field by the atomic electrons
Spherically symmetric atomic potential
Relativistic electron wave functions
\square Experimental electron binding energies
Nuclear model
\square Finite nuclear size
\square Spherically symmetric nucleus; most abundant isotope

BrIcc - Calculations of conversion coefficients

I.M. Band, et al., ADNDT 81 (2002) 1. (RAINE code)
S. Raman, et al., PRC 66 (2002) 044312 (overview of the theoretical calculations)

Higher order effect - ignored in most models
Atomic many body correlations: factor ~ 2 for $\mathrm{E}_{\text {kin }}(c e)<1 \mathrm{keV}$
Partially filled valence shell: non-spherical atomic field
Binding energy uncertainty: $<0.5 \%$ for $E_{\text {kin }}(c e)>10 \mathrm{keV}$
Chemical effects: $<1 \%$
Intranuclear conversion - Penetration effect

How good the ICC's are now?

- Measure of goodness:
$\Delta[\%]=\left(\alpha_{\text {exp }}-\alpha_{\text {theor }}\right) / \alpha_{\text {theor }}$
- 188 transitions ($\Delta \alpha / \alpha<10 \%$)
- E2, M3, E3, M4, E4, E5 mult.
- Z=20 to Z=95

Largest difference at $E_{\mathrm{tr}} / E_{B E, K}=1$
I Inclusion of hole
Initial / Final WF not orthogonal

- BrIcc: Frozen-Orbital approx.
- Hole remains unfilled
- Initial WF: neutral atom SCF
- Final WF: constructed from bound WF of a neutral atom (not SCF of an ion)

Theoretical electron conversion coefficients

$\boldsymbol{\alpha}_{i}$ Conversion coefficients:
TK, et al., NIM A589 (2008) 202
Z=5:110
TK, et al., ADNDT, 98 (2012) 313
$Z=111: 126$

- K-Q2 atomic shells

1-6000 keV transition energy
\square Starting 1 keV above shell $B E$

- E1-E5 \& M1-M5 mult.
- Decreases by energy
- Increases by L
- Decreases by atomic shell

Increases by Z

- Observed in all elements
- Only for electric transitions

Resonances in E1-E5 conversion coefficients at low energy
M.B. Trzhaskovskaya, et al. PRC 81 (2010) 024326

Partial conversion matrix
elements vanishing at
certain energies

Is it real? Using BrIcc found 13 ICC in resonant energy regions

T. Kibédi, ANU

EO - electric monopole transitions

J.T.H. Dowie, et al., EPJ Web of Conf. 232, 04004 (2020)

Selection rule for EO:

$$
\mathrm{j}_{\mathrm{i}}=\mathrm{j}_{\mathrm{f}} ; \quad \Delta \pi=0
$$

EO conversion coefficient NOT DEFINED

$$
\alpha(E O)=\lambda_{c E, P F}(E O) / \lambda_{\gamma}(E O)
$$

EO transition rate

$$
\lambda_{C E, P F}(\mathrm{EO})=\rho^{2}(\mathrm{EO}) \Omega_{C E, P F}(\mathrm{EO})
$$

$\rho(E O)$ - monopole strength parameter, contains all nuclear structure information
$\Omega_{C E, P F}(E O)$ - theoretical EO electronic factor
EO reduced transition rate

$$
B(E O)=\rho^{2}(E O) e^{2} R_{0}{ }^{4}
$$

CE, IPF or double (M1 \& E1) photon emission No single photon emission is allowed!

Conversion coefficients \& EO electronic factors

I.M. Band, et al., NP A156 (1970) 170

Different nuclear matrix elements \& formation regions

Transition rates:
"Normal" conversion $\quad \Gamma_{i, C E}=\Gamma_{\gamma} \times \alpha_{i}$
Formation: extra-nuclear
EO conversion

$$
\Gamma_{i, C E}=\rho^{2} \times \Omega_{i}
$$

Formation: intra-nuclear

Atomic structure \downarrow

Penetration effect

E1 and M1 transitions could be hindered. Atomic WF overlap with could be larger

$$
\begin{aligned}
{ }^{203} \mathrm{TI}: \mathrm{E}_{\gamma}=279.1955(12) \mathrm{keV} ; \mathrm{M} 1+\mathrm{E} 2 ; \delta=+1.17(5) & \alpha_{k}(\mathrm{Hslcc})=0.216 \\
\alpha_{k}(\exp)=0.1642(11) \text { from } 7 \text { measurements } & \alpha_{k}(\mathrm{Brlcc})=0.209
\end{aligned}
$$

\square "Static effects" are taken into account approximately, but consistently (SC model, Sliv)
\square Hindered transitions: correction for "dynamic effects" (Pauli)

Electron-positron pair conversion

EM decay: energy and momentum carried away

Selection rules ($\pi L, L>0$)

$$
\begin{aligned}
& \left|L-j_{i}\right| \leq j_{\mathrm{f}} \leq L+j_{i} \\
& \pi=(-1)^{L} \text { for } E L \\
& \pi=(-1)^{L+1} \text { for } M L
\end{aligned}
$$

Selection rules (EO)

$$
\mathrm{j}_{\mathrm{i}}=\mathrm{j}_{\mathrm{f} ;} ; \Delta \pi=0
$$

$$
\begin{gathered}
\text { Transition probability } \\
\lambda_{T}=\lambda_{\gamma}+\lambda_{k}+\lambda_{L}+\lambda_{\lambda} \\
\text { Conversion coefficient } \\
\alpha_{C E, P F}=\lambda_{C E, P F} \lambda_{\gamma} \\
\lambda_{C E, P F}=\lambda_{\gamma} \times \alpha_{C E, P F} \\
\hline
\end{gathered}
$$

$$
\lambda_{T}=\lambda_{Y}+\lambda_{K}+\lambda_{L}+\lambda_{M} \ldots . . .+\lambda_{P F}
$$

Energetics

Gamma $E_{\gamma}=E_{i}-E_{f}+T_{r}$
CE
$E_{C E, i}=E_{i}-E_{f}-E_{B E, i}+T_{r}$
$E^{+}+E^{-}=E_{i}-E_{f}-2 m_{0} c^{2}+T_{r}$

Electron-positron pair conversion

BrIcc data tables

Combining $\gamma-$, CE \& pair spectroscopy

${ }^{56} \mathrm{Fe}\left(p, p^{\prime}\right)$ @ 6.7 MeV $1.5 \mathrm{mg} / \mathrm{cm}^{2}$ nat Fe $1 \mu \mathrm{~A}$ beam

T. Kibédi, ANU

Mixed transitions

EM decay: energy and ang. momentum carried away Selection rules (πL)

$$
\begin{aligned}
& \left|L-j_{i}\right| \leq j_{\mathrm{f}} \leq L+\mathrm{j}_{\mathrm{i}} \\
& \pi=(-1)^{L} \text { for } E L \\
& \pi=(-1)^{L+1} \text { for } M L
\end{aligned}
$$

γ-ray transition probability:

$$
\lambda_{\gamma}\left(\pi^{\prime} L^{\prime} / \pi L\right)=\lambda_{\gamma}\left(\pi^{\prime} L^{\prime}\right)+\lambda_{\gamma}(\pi, L)
$$

Mixing ratio (MR) $\quad \delta^{2}\left(\pi^{\prime} L^{\prime} / \pi L\right)=\frac{\lambda_{\gamma}\left(\pi^{\prime} L^{\prime}\right)}{\lambda_{\gamma}(\pi L)}$
Mixing of 3 multipolarities: ${ }^{184} \mathrm{~W} 536.674(15) \mathrm{keV}$ $E 1+M 2+E 3$

$$
\begin{gathered}
\delta(M 2 / E 1)=+0.070(6) \\
\delta(E 3 / M 2)=-0.025(4) \\
\lambda=-2.1(2)
\end{gathered}
$$

Example: 2^{+}to 1^{+}transition, $\Delta J=-1 ; \Delta \pi=+$

- M1 ($\Delta J=-1,0,+1$)
- E2 ($\Delta \mathrm{J}=-2,-1,0,+1,+2$)
- mixed $M 1+E 2(\Delta J=-1,0,+1)$

$$
(\Delta J=-2,-1,0,+1,+2)
$$

Obtaining conversion coefficients

https://bricc.anu.edu.au

All input parameters verified Minimum input: Chemical symbol/Z \& E

Obtaining conversion coefficients factors

```
BrIccS v2.3 (9-Dec-2011)
Z=68 (Er, Erbium)
Y-energy: 1447.820 (+25 -25) keV
Mixing Ratio \delta: +0.5 (+3 -3)
Data Sets: BrIccFO HoPcc
```

Conversion coefficient for CE and IPF

Warning

- ICC could not be calculated for EG+DEGH above 398.000 keV
- ICC could not be calculated for EG+DEGH above 398.000 keV

Shell	E(ce)	M1	E2		Mixe
Tot		$2.603 \mathrm{E}-03$	$1.673 \mathrm{E}-03$	0.00242	(18)
K	1390.33	2.152E-03	1.367E-03	0.00200	(16)
L-tot	1438.11	3.001E-04	$1.955 \mathrm{E}-04$	0.000279	(21)
K/L		$7.170 \mathrm{E}+00$	$6.994 \mathrm{E}+00$	7.1	(8)
M-tot	1445.62	6.606E-05	4.314E-05	6.1E-5	(5)
L/M		$4.544 \mathrm{E}+00$	$4.531 \mathrm{E}+00$	4.5	(5)
N6	1447.81				
N7	1447.82				
N -tot	1447.38	$1.541 \mathrm{E}-05$	1.003E-05	$1.43 \mathrm{E}-5$	(11)
L/N		1.948E+01	$1.948 \mathrm{E}+01$	19.5	(20)
0-tot	1447.76	2.243E-06	$1.442 \mathrm{E}-06$	2.08E-6	(16)
L/0		1. $338 \mathrm{E}+02$	$1.355 \mathrm{E}+02$	134	(14)
P-tot	1447.81	1.276E-07	7.790E-08	$1.18 \mathrm{E}-7$	(10)
L/P		$2.353 \mathrm{E}+03$	$2.509 \mathrm{E}+03$	2.4 E 3	(3)
IPF		$6.738 \mathrm{E}-05$	5.557E-05	$6.50 \mathrm{E}-5$	(25)
Tot (CE)		$2.536 \mathrm{E}-03$	$1.617 \mathrm{E}-03$	0.00235	(16)

Contribution to uncertainties

- Transition energy (dependence on transition energy
- Multipole mixing ratios
- Model constrains, tabulation/interpolation

$$
\alpha\left(\pi^{\prime} L^{\prime} / \pi L\right)=\frac{\alpha(\pi L)+\delta^{2} \alpha\left(\pi^{\prime} L^{\prime}\right)}{1+\delta^{2}}
$$

- 1.4% of the ICC; 5% of the $\Omega(E 0)$

ENSDF: Use the Gaussian method for uncertainty propagation

- Based on partial derivatives; only valid for small relative uncertainties!

New Monte Carlo based uncertainty propagation

Obtaining conversion coefficients

BrIcc-desktop application
from IAEA: $\underline{h t \dagger p s: / / w w w-n d s . i a e a . o r g / p u b l i c / e n s d f ~ p g m / ~}$

Z= 68	Erbium		Transition energy: 1447.820 keV			keV Conversion Coefficient			BrIcc v2.3e (17-Jun-2020) Data Table: BrIccFO		
Shell	E_e [keV]	E1	M1	E2	M2	E3	M3	E4	M4	E5	M5
Tot		8.681E-04	$2.603 \mathrm{E}-03$	$1.673 \mathrm{E}-03$	5.932E-03	$3.201 \mathrm{E}-03$	$1.077 \mathrm{E}-02$	5.797E-03	$1.842 \mathrm{E}-02$	$1.019 \mathrm{E}-02$	$3.075 \mathrm{E}-02$
	1390.33	6.049E-04	2.152E-03	$1.367 \mathrm{E}-03$	4.973E-03	$2.636 \mathrm{E}-03$	8.950E-03	4.692E-03	$1.509 \mathrm{E}-02$	8.006E-03	$2.471 \mathrm{E}-02$
tot		$8.038 \mathrm{E}-05$	3.001E-04	$1.955 \mathrm{E}-04$	$7.305 \mathrm{E}-04$	$4.226 \mathrm{E}-04$	1.411E-03	8.584E-04	$2.589 \mathrm{E}-03$	$1.690 \mathrm{E}-03$	$4.676 \mathrm{E}-03$
M-tot		$1.757 \mathrm{E}-05$	6.606E-05	$4.314 \mathrm{E}-05$	$1.619 \mathrm{E}-04$	$9.455 \mathrm{E}-05$	$3.157 \mathrm{E}-04$	$1.950 \mathrm{E}-04$	$5.860 \mathrm{E}-04$	$3.899 \mathrm{E}-04$	$1.072 \mathrm{E}-03$
N -tot		$4.088 \mathrm{E}-06$	$1.541 \mathrm{E}-05$	$1.003 \mathrm{E}-05$	$3.779 \mathrm{E}-05$	$2.198 \mathrm{E}-05$	7.371E-05	$4.531 \mathrm{E}-05$	$1.369 \mathrm{E}-04$	$9.055 \mathrm{E}-05$	$2.505 \mathrm{E}-04$
0-tot		$5.923 \mathrm{E}-07$	$2.243 \mathrm{E}-06$	$1.442 \mathrm{E}-06$	$5.486 \mathrm{E}-06$	$3.122 \mathrm{E}-06$	$1.064 \mathrm{E}-05$	6.349E-06	$1.959 \mathrm{E}-05$	$1.252 \mathrm{E}-05$	$3.548 \mathrm{E}-05$
P-tot		$3.333 \mathrm{E}-08$	$1.276 \mathrm{E}-07$	$7.790 \mathrm{E}-08$	$3.070 \mathrm{E}-07$	$1.576 \mathrm{E}-07$	5.797E-07	$2.966 \mathrm{E}-07$	$1.029 \mathrm{E}-06$	$5.377 \mathrm{E}-07$	$1.781 \mathrm{E}-06$
PF		$1.605 \mathrm{E}-04$	6.738E-05	5.557E-05	$2.308 \mathrm{E}-05$	$2.252 \mathrm{E}-05$	8.729E-06				
n	\|ChemSy	Z+Integ	SUBShell	ATAtable	l? for he	p\|EXIT [14	47.820] >				

Designed to work with ENSDF files

- Step\#1: evaluate ICC`s for all transitions

BrIcc 166Ho_beta.ens
Output files: calculation report, new GAMMA records

- Step\#2: insert new records into ENSDF file

BrIcc 166Ho_beta.ens merge

Obtaining conversion coefficients

BrIccS - slave application to be called from other codes
from ANU: https://bricc.anu.edu.au/download.php
User input on the command line

```
MacBook-Pro-6:~ tibor$ briccs -S Er -g 1447.820 -e 25 -L M1+E2 -d +0.5 -u 3
<BRICC version="BrIccS v2.3d (23-May-2020)">
    <ELEM z="68" symb="Er"> Erbium </ELEM>
    <DATASET icc="BrIccFO" pcc="HoPcc"> </DATASET>
    <MULT mult1="M1" mult2="E2"> M1+E2 </MULT>
    <MR dmrh="+3" dmrl="-3"> +0.5 </MR>
    <E deh="+25" del="-25"> 1447.820 </E>
    <MixedCC
        Shell="Tot"
        CCmult1="2.603E-03"
        CCmult2="1.673E-03"
        DCC="18">
        0.00242
    </MixedCC>
    <MixedCC
            Shell="K"
                        XML output
    Eic="1390.334"
    DEic="25"
    CCmult1="2.152E-03"
    CCmult2="1.367E-03"
    DCC="15">
    0.00200
    </MixedCC>
```


Obtaining conversion coefficients

BrIccG - plot conversion coefficients and ratios
from ANU: https://bricc.anu.edu.au/grapher.php

Brlcc grapher

Obtaining conversion coefficients

BrIccG - plot conversion coefficients and ratios
from ANU: https://bricc.anu.edu.au/grapher.php

K/L ratio for Z=99 (Es); DataSet: Icc=BrlccFO, BrIccG v2.3b (28-Dec-2020)

K/L for $\mathrm{Z}=99$
T. Kibédi, ANU

Using ICC values - intensity balance of decay schemes

Transition probability
$\lambda_{T}=\lambda_{\gamma}+\lambda_{K}+\lambda_{L}+\lambda_{M} \ldots \ldots+\lambda_{P F}$
Total transition intensity
$I_{\text {tot }}=I_{\gamma} *\left(1+\alpha_{\text {tot }}\right)$
Intensity balance
$I_{\text {tot }}(245)=I_{\text {tot }}(151)+I_{\text {tot }}(171)$
$I_{\gamma}(171)$ from $\alpha_{\text {tot }}(171)$]
$I_{\gamma}(171)=\left(100-I_{\beta}(396) /\left[1+\alpha_{\text {tot }}(171)\right]\right.$

Using ICC values -decay schemes normalization

${ }^{148} \mathbf{P r} \beta^{-}$decay (2.29 min) \quad 1988K $\mathbf{1}$ 14,1997Gr09

Decay Scheme
Intensities: $\mathbf{I}_{(\gamma+c e)}$ per 100 parent decays
Legend

Total decay intensity to g.s. $=100$

Experimental determination of ICC's

Definition: $\quad \alpha_{i, \text { exp }}=I_{i, C E} / I_{\gamma}$
absolute detector efficiency for CE and γ-rays: hard to do
\square Most ICCs from PNG (i: K, L,...)

$$
\alpha_{i, e \times p}=N^{*}\left[A_{i, C E} / \varepsilon_{C E}\left(E_{C E}\right)\right] /\left[A_{\gamma} / \varepsilon_{\gamma}\left(E_{\gamma}\right)\right]
$$

Using a known conversion coefficient or assumed multipolarity

$$
\mathrm{N}=\alpha_{i, \text { cal }} * I_{\gamma, \text { cal }} / I_{i, \text { cal }}
$$

- α_{k} from singles γ and $K X$-rays

$$
\alpha_{k} \omega_{K}=\left[N_{k} / N_{\gamma}\right] *\left[\varepsilon_{\gamma} / \varepsilon_{k}\right]
$$

] $\alpha_{\text {tot }}$ from intensity balance (singles/coincidence measurements)

$$
I_{\gamma}(1) *\left[1+\alpha_{\text {tot }}(1)\right]=I_{\gamma}(2) *\left[1+\alpha_{\text {tot }}(2)\right]
$$

For low energy / highly converted transitions
] etc...
Always report details of the calibration

BrIccMixing - Multipolarity mixing ratio from ICC`s

$3 / 2-0.0$	21.772 y
$\begin{array}{r} 227 \\ 89 \end{array} \mathbf{A c}_{198}$	
	\% $\beta^{-}=98.6200$
$Q^{-}=44.8{ }^{8}$	

Intenaitiea: I($\gamma+c e$) per 100
parent decays
$Q^{-}=44.8^{8}$

> ICC for CE and IPF
> $\alpha\left(\pi^{\prime} L^{\prime} / \pi L\right)=\frac{\alpha(\pi L)+\delta^{2} \alpha\left(\pi^{\prime} L^{\prime}\right)}{1+\delta^{2}}$

Physics Letters B
Volume 820, 10 September 2021, 136593

The first experimental evidence for the (M1 + E2) mixed character of the 9.2 keV transition in ${ }^{227} \mathrm{Th}$
 J. Kvasil ${ }^{\text {e }}$

BrIccMixing - Multipolarity mixing ratio from ICC`s

$3 / 2-\quad 0.0$	21.772 y
${ }_{89}^{22}{ }^{\text {Ac }} \mathrm{c}_{198}$,
	$\%_{6} \beta^{-}=98.6200$
$Q^{-}=44.88$	

Intengities: $I(\gamma+c e)$ per 100
parent decays
$Q^{-}=44.8^{8}$

> ICC for CE and IPF
> $\alpha\left(\pi^{\prime} L^{\prime} / \pi L\right)=\frac{\alpha(\pi L)+\delta^{2} \alpha\left(\pi^{\prime} L^{\prime}\right)}{1+\delta^{2}}$

Physics Letters B
Volume 820, 10 September 2021, 136593

The first experimental evidence for the (M1 + E2) mixed character of the 9.2 keV transition in ${ }^{227} \mathrm{Th}$
 J. Kvasil ${ }^{\text {e }}$

BrIccMixing - Multipolarity mixing ratio from ICC`s

ICC of a Hydrogen-like ${ }^{192 \mathrm{~m}} \mathrm{Os}$

A. Akber et al., Phys.Rev. C 91, 031301 (2015)

- ${ }^{197} \mathrm{Au} @ 478-492 \mathrm{MeV}$ on $221 \mathrm{mg} / \mathrm{cm} 2{ }^{9} \mathrm{Be}$; relativistic projectile fragmentation UNILAC \& SIS-18 GSI
- Hydrogen like (one K electron only, Z=76) ${ }^{192 m}$ Os in storage ring

$$
\begin{aligned}
& \tau_{\mathrm{H} \text {-like }}=13.0(24) \mathrm{s}(\text { calc }) \\
& \left.\tau_{\text {rest }}=15.1(+15-13) \mathrm{s} \text { (measured }\right)
\end{aligned}
$$

Angular distributions and correlations

Gamma-gamma angular correlation well understood, widely used

$$
W(\gamma \gamma, E 2+M 1)=P_{0}+\frac{1}{1+\delta^{2}}\left[A_{2}^{e}+2 \delta A_{2}+\delta^{2} A_{2}^{m}\right] P_{2}+\frac{1}{1+\delta^{2}}\left[A_{4}^{e}\right] P_{4}
$$

$A_{2} A_{4}$ can be calculated; "e" E2, "m" M1

- Electron-gamma angular correlation
$W(e \gamma, E 2+M 1)=P_{0}+\frac{1}{1+p^{2}}\left[b_{2}^{e} A_{2}^{e}+2 p b_{2} A_{2}+p^{2} b_{2}^{m} A_{2}^{m}\right] P_{2}+\frac{1}{1+p^{2}}\left[b_{4}^{e} A_{4}^{e}\right] P_{4}$
$b_{2} b_{4}$ particle parameters need to be calculated
Hager-Seltzer Nucl. Data A4, 1 (1968)
$p^{2}=\delta^{2} \times \alpha_{M 1} / \alpha_{E 2}$
\square Corrections using Monte Carlo
- SINGLES: for angular distribution
- COINCIDENCES: for angular correlation
- PAIR CONVERSION: see T.K. Eriksen, PhD (ANU) 2018

BrIccEmis - atomic relaxation following nuclear decay B.Q. Lee \& B.P.E. Tee

BrIccEmis - atomic relaxation following nuclear decay B.Q. Lee \& B.P.E. Tee

Review
Clustered DNA Damages induced by 0.5 to 30 eV Electrons

Yi Zheng ${ }^{1, *(©)}$ and Léon Sanche ${ }^{2(1)}$

Subcellular Targeting of Theranostic Radionuclides

Bas M. Bavelaar, Boon Q. Lee, Martin R. Gill, Nadia Falzone and Katherine A. Vallis* Frontiers in Pharmacology 2018, 9, 996.

T. Kibédi, ANU

Step 1: Evaluate distribution of atomic vacancies from nuclear decay latest nuclear data and models (ENSDF, BrIcc, BetaShape)

- Step 2: Propagate vacancies using a full Monte Carlo approach
- Transition energies: from atomic model calculations (Raine DF)
- Transition rates: from Evaluated Atomic Data Library
- Step 3: Full energy spectrum from sorting data of 1 Million (or more) decay events

BrIccEmis data base: quick retrieval of the full atomic spectra In seconds instead of hours

Auger yield calculations for medical radioisotopes
Boon Q. Lee ${ }^{1, a}$, Tibor Kibédi' ${ }^{1}$, and Andrew E. Stuchbery ${ }^{1}$
International Journal of Radiation Biology

A stochastic cascade model for Auger-electron emitting radionuclides

Boon Q. Lee, Hooshang Nikjoo, Jörgen Ekman, Per Jönsson, Andrew E.
Stuchbery \& Tibor Kibedi

Absorbed dose evaluation of Auger electron-emitting radionuclides: impact of input decay spectra on dose point kernels and S-values

Nadia Falzone ${ }^{1,2,2,6,8}$, Boon Q Lee ${ }^{3,6}$,
José M Fernández-Varea4, Christiana Kartsonaki ${ }^{\text {S }}$,
Andrew E Stuchbery ${ }^{3}$,Tibor Kibédi ${ }^{3,7}$ and
Katherine A Vallis ${ }^{1,7}$

BrIccEmis - atomic relaxation following nuclear decay B.Q. Lee \& B.P.E. Tee

For a single ionized system:
\quad Neutral binding energies
$E(X, Y Z)=B E(X)-B E(Y)-B E(Z)+\Phi$

Breit and QED corrections not in RAINE \square semi-empirical corrections using literature values of $B E$ - Grasp2K BE calculations (preferably)

Kovalik, et al., J. of Electron Spect. and Rel. Phen. 105 (1999) 219

Auger energies
No correction
With correction

BrIccEmis - atomic relaxation following nuclear decay B.Q. Lee \& B.P.E. Tee

M. Alotiby, et al., J. Elect. Spectr. Rel. Phenom. 232 (2019) 73
B.P.E. Tee, et al., PRC 100 (2019) 034313

Thanks

