

Evaluating conversion coefficients using BrIcc

T. Kibédi

Department of Nuclear Physics Australian National University Canberra, Australia Tibor.Kibedi@anu.edu.au

Outline

- □ EM processes
- □ History of measuring and calculating ICC`s
- □ BrIcc conversion electron calculations
- □ E0 electronic factors
- □ Electron positron pair conversion
- □ Some comments on obtaining, using and deducing ICC
- □ BrIcc/BrIccS/BrccG/BrIccMixing/BrIccEmis

ANU HIAS NEC 14UD tandem electrostatic accelerator (1975)

HV: up to 15.85 MV Intensity: $\sim 1 \mu A$ Beam pulsing: 1 ns ON &

106 ns to 1 s OFF

Research areas

- > Nuclear Structure (γ -ray, conversion electron spectroscopy, hyperfine interactions)
- Nuclear Reaction Dynamics
- Accelerator Mass Spectrometry

- \Box <u>Super-E</u>: 2.1 tesla solenoid to transport up to 15 MeV β -rays
- □ Operational since 1991; CE and electron-positron pair measurements
- **Q** 2 loops absorber system: complete suppression of γ and X-rays
- Si(Li) array in sum-coincidences: FWHM < 10 keV energy resolution at 7.65 MeV
- Well defined electron transport: high accuracy in intensity measurements

Electromagnetic Decay Processes

EM decay: energy and momentum carried away

Experiments over 60 years

Calculations over 60 years

BrIcc - Calculations of conversion coefficients

I.M. Band, et al., ADNDT 81 (2002) 1. (RAINE code)

S. Raman, et al., PRC 66 (2002) 044312 (overview of the theoretical calculations)

<u>Physical model</u>

Calculations up to the first nonvanishing order of the perturbation theory

<u>Atomic field model</u>

- One-electron approximation
 - Free neutral atom
- Screening of the nuclear field by the atomic electrons
- Spherically symmetric atomic potential
- Relativistic electron wave functions
- Experimental electron binding energies

<u>Nuclear model</u>

Ginite nuclear size

Spherically symmetric nucleus; most abundant isotope

BrIcc - Calculations of conversion coefficients

I.M. Band, et al., ADNDT 81 (2002) 1. (RAINE code)

S. Raman, et al., PRC 66 (2002) 044312 (overview of the theoretical calculations)

Higher order effect - ignored in most models

- Atomic many body correlations: factor ~2 for E_{kin}(ce) < 1 keV
- Partially filled valence shell: non-spherical atomic field
- Binding energy uncertainty: <0.5% for E_{kin}(ce) > 10 keV
- Chemical effects: <<1%</p>
- Intranuclear conversion Penetration effect

How good the ICC's are now?

How good the ICC`s are now?

Measure of goodness:

 Δ [%] = (α_{exp} - α_{theor})/ α_{theor}

188 transitions ($\Delta \alpha / \alpha < 10\%$)

- □ E2, M3, E3, M4, E4, E5 mult.
- □ Z=20 to Z=95

 \Box Largest difference at $E_{tr}/E_{BE,K} = 1$

Inclusion of hole

Initial / Final WF not orthogonal

- □ BrIcc: Frozen-Orbital approx.
 - Hole remains unfilled
 - Initial WF: neutral atom SCF
 - Final WF: constructed from bound WF of a neutral atom (not SCF of an ion)

Theoretical electron conversion coefficients

http://bricc.anu.edu.au

Observed in all elements
 Only for electric transitions

Resonances in E1-E5 conversion

coefficients at low energy

M.B. Trzhaskovskaya, et al. PRC 81 (2010) 024326

EO - electric monopole transitions

J.T.H. Dowie, et al., EPJ Web of Conf. **232**, 04004 (2020)

Selection rule for EO: $j_i = j_f; \Delta \pi = 0$

E0 conversion coefficient NOT DEFINED α (E0) = $\lambda_{CE,PF}$ (E0) / λ_{γ} (E0)

E0 transition rate $\lambda_{CE,PF}(E0) = \rho^2(E0) \Omega_{CE,PF}(E0)$

 $\rho(\text{EO})$ – monopole strength parameter, contains all nuclear structure information

 $\Omega_{CE,PF}(E0)$ - theoretical EO electronic factor

E0 reduced transition rate B(E0) = $\rho^2(E0) e^2 R_0^4$

CE, IPF or double (M1 & E1) photon emission No single photon emission is allowed!

Conversion coefficients & EO electronic factors

Always decreasing

NUTRIN NUR COMPANY

Penetration effect

E1 and M1 transitions could be hindered. Atomic WF overlap with could be larger

Hindered transitions: correction for "dynamic effects" (Pauli)

Electron-positron pair conversion

EM decay: energy and momentum carried away

Electron-positron pair conversion

BrIcc data tables

* Will be available through BrIcc (early 2022)

Combining γ -, CE & pair spectroscopy

⁵⁶Fe(p,p') @ 6.7 MeV 1.5 mg/cm² nat Fe 1 μA beam

Mixed transitions

γ-ray transition probability:			
$\lambda_{\gamma}(\pi^{\prime}L^{\prime}/\pi L) = \lambda_{\gamma}(\pi^{\prime}L^{\prime}) + \lambda_{\gamma}(\pi,L)$			
Mixing ratio (MR)	$\delta^2(\pi'L'/\pi L) = \frac{\lambda_\gamma(\pi'L')}{\lambda_\gamma(\pi L)}$		

Conversion coefficient for CE and IPF

 $\alpha(\pi'L'/\pi L) = \frac{\alpha(\pi L) + \delta^2 \alpha(\pi'L')}{1 + \delta^2}$

Mixing of 3 multipolarities: ¹⁸⁴W 536.674(15) keV E1+M2+E3 $\delta(M2/E1)$ =+0.070(6) $\delta(E3/M2)$ =-0.025(4) λ =-2.1(2)

 $\Delta \pi = -1$

E3

M4

E1

M2

EM decay: energy and ang. momentum carried away

Selection *rules* (πL)

 $|L-j_i| \leq j_f \leq L+j_i$

 $\pi = (-1)^{L}$ for EL

 $\pi = (-1)^{L+1}$ for ML

 $\Lambda\pi$ =+1

M3

 πL M1

π'L' E2 E4

https://bricc.anu.edu.au

•	🔒 bricc	.anu.edu.au C
Australian National University A	RICC CONVERSION COEFI ALCULATOR esearch School of Physics NU College of Science	Search ANU web, staff & maps
Home Grapher Docum	entaion Download About	
Bricc Conversion Coeffic The Bricc program calculates the co (ΩIC,π(E0)). Z Energy uncertainty	cient Calculator onversion electron (alC), electron- e er 1447.820 25	 Chemical symbol or Z Transition energy [keV] Energy uncertainty Multipolarity Mixing ratio Mixing ratio uncertainty Calculate Subshell ICC`s Data set BrIccFO, BrIccNH, RpIcc or HsIcc
Multipolarity	M1+E2	
ο δ uncerntainty	+0.5 3	
Subshells		
Data set	BriccFO 🛟	
		Calculate

All input parameters verified Minimum input: Chemical symbol/Z & E γ

Obtaining conversion coefficients factors

BrIccS v2.3 (9-Dec-2011)

Z=68 (Er, Erbium)

γ-energy: 1447.820 *(+25 -25)* keV

Mixing Ratio δ: +0.5 (+3 -3)

Data Sets: BrIccFO HoPcc

Warning

ICC could not be calculated for EG+DEGH above 398.000 keV
ICC could not be calculated for EG+DEGH above 398.000 keV

Conversion coefficient for CE and IPF $\alpha(\pi'L'/\pi L) = \frac{\alpha(\pi L) + \delta^2 \alpha(\pi'L')}{1 + \delta^2}$

Shell	E(ce)	M1	E2		Mixed ICC
Tot		2.603E-03	1.673E-03	0.00242	(18)
к	1390.33	2.152E-03	1.367E-03	0.00200	(16)
L-tot	1438.11	3.001E-04	1.955E-04	0.000279	(21)
K/L		7.170E+00	6.994E+00	7.1	(8)
M-tot	1445.62	6.606E-05	4.314E-05	6.1E-5	(5)
L/M		4.544E+00	4.531E+00	4.5	(5)
N6	1447.81				
N7	1447.82				
N-tot	1447.38	1.541E-05	1.003E-05	1.43E-5	(11)
L/N		1.948E+01	1.948E+01	19.5	(20)
0-tot	1447.76	2.243E-06	1.442E-06	2.08E-6	(16)
L/0		1.338E+02	1.355E+02	134	(14)
P-tot	1447.81	1.276E-07	7.790E-08	1.18E-7	(10)
L/P		2.353E+03	2.509E+03	2.4E3	(3)
IPF		6.738E-05	5.557E-05	6.50E-5	(25)
Tot(CE)		2.536E-03	1.617E-03	0.00235	(16)

Oscillations in the ICC calculations

Contribution to uncertainties

□ Transition energy (dependence on transition energy

Multipole mixing ratios

Model constrains, tabulation/interpolation

 \circ 1.4% of the ICC; 5% of the $\Omega(\text{EO})$

$$\alpha(\pi'L'/\pi L) = \frac{\alpha(\pi L) + \delta^2 \alpha(\pi'L')}{1 + \delta^2}$$

ENSDF: Use the Gaussian method for uncertainty propagation Based on partial derivatives; only valid for small relative uncertainties! <u>New Monte Carlo based uncertainty propagation</u>

¹⁶⁶Er 1447.820 M1+E2 δ=+0.5(3) Gaussian method:

α_K=0.00200(16)

ΜC α_K=0.00196(11)

BrIcc - desktop application

from IAEA: https://www-nds.iaea.org/public/ensdf_pgm/

Z= 68	Erbium	-	Fransition	energy: 1	447.820	keV Conversion C	oefficient		BrIcc v2 Data Tab	.3e (17-Ju	un-2020) -0
Shell	E_e [keV]	E1	M1	E2	M2	E3	M3	E4	M4	E5	M5
Tot K L-tot M-tot N-tot 0-tot P-tot	1390.33	8.681E-04 6.049E-04 8.038E-05 1.757E-05 4.088E-06 5.923E-07 3.333E-08	2.603E-03 2.152E-03 3.001E-04 6.606E-05 1.541E-05 2.243E-06 1.276E-07	1.673E-03 1.367E-03 1.955E-04 4.314E-05 1.003E-05 1.442E-06 7.790E-08	5.932E- 4.973E- 7.305E- 1.619E- 3.779E- 5.486E- 3.070E-	-03 3.201E-03 -03 2.636E-03 -04 4.226E-04 -04 9.455E-05 -05 2.198E-05 -06 3.122E-06 -07 1.576E-07	1.077E-02 8.950E-03 1.411E-03 3.157E-04 7.371E-05 1.064E-05 5.797E-07	5.797E-03 4.692E-03 8.584E-04 1.950E-04 4.531E-05 6.349E-06 2.966E-07	1.842E-02 1.509E-02 2.589E-03 5.860E-04 1.369E-04 1.959E-05 1.029E-06	1.019E-02 8.006E-03 1.690E-03 3.899E-04 9.055E-05 1.252E-05 5.377E-07	3.075E-02 2.471E-02 4.676E-03 1.072E-03 2.505E-04 3.548E-05 1.781E-06
IPF TranEn	er ChemSyml	1.605E-04 Z+Intege	6.738E-05 r SUBShell	5.557E-05 DATAtable	2.308E- ? for	-05 2.252E-05 help EXIT [14	8.729E-06 47.820] >				

Designed to work with ENSDF files

□ Step#1: evaluate ICC`s for all transitions

BrIcc 166Ho_beta.ens

Output files: calculation report, new GAMMA records

□ Step#2: insert new records into ENSDF file

BrIcc 166Ho_beta.ens merge

BrIccS - slave application to be called from other codes from ANU: <u>https://bricc.anu.edu.au/download.php</u>

User input on the command line

```
MacBook-Pro-6:~ tibor$ briccs -S Er -g 1447.820 -e 25 -L M1+E2 -d +0.5 -u 3
<BRICC version="BrIccS v2.3d (23-May-2020)">
  <ELEM z="68" symb="Er"> Erbium </ELEM>
  <DATASET icc="BrIccF0" pcc="HoPcc"> </DATASET>
  <MULT mult1="M1" mult2="E2"> M1+E2 </MULT>
  <MR dmrh="+3" dmrl="-3"> +0.5 </MR>
  <E deh="+25" del="-25"> 1447.820 </E>
  <MixedCC
    Shell="Tot"
    CCmult1="2.603E-03"
    CCmult2="1.673E-03"
    DCC="18">
    0.00242
  </MixedCC>
  <MixedCC
                                       XML output
    Shell="K"
    Eic="1390.334"
    DEic="25"
    CCmult1="2.152E-03"
    CCmult2="1.367E-03"
    DCC="15">
    0.00200
  </MixedCC>
```


BrIccG - plot conversion coefficients and ratios

from ANU: https://bricc.anu.edu.au/grapher.php

	D			🔒 bricc.anu.edu.au	5	
	National University	CALCULA Research S ANU Colleg	TOR chool of Phys e of Science	ics	Search ANU web, staff & maps	
Home	Grapher	Documentaion	Download	About		

Brlcc grapher

Z	* ER
Multipolarity δ	multipolarity (optional) mixing ratio (optional)
Shell	Particular shell: K, L1, L2, or L
Shell1 Shell2	Ratios of shell: K/L1 or K/L
Subshells	

Generate Graph

BrIccG - plot conversion coefficients and ratios from ANU: https://bricc.anu.edu.au/grapher.php

K/L for Z=99

Using ICC values - intensity balance of decay schemes

Transition probability $\lambda_T = \lambda_\gamma + \lambda_K + \lambda_L + \lambda_M..... + \lambda_{PF}$

Total transition intensity I_{tot} = $I_{\gamma} * (1+\alpha_{tot})$

Intensity balance $I_{tot}(245) = I_{tot}(151) + I_{tot}(171)$

 $I_{\gamma}(171)$ from $\alpha_{tot}(171)$] I $\gamma(171)$ =(100 - $I_{\beta}(396)$ / [1 + $\alpha_{tot}(171)$]

Using ICC values -decay schemes normalization

¹⁴⁸Pr β^- decay (2.29 min) 1988Ka14,1997Gr09

NUTRE IN ALL COMPANY

Experimental determination of ICC's

Definition: $\alpha_{i,exp} = I_{i,CE} / I_{\gamma}$ \Box Absolute detector efficiency for CE and γ -rays: hard to do \Box Most ICCs from PNG (i: K, L,...) $\alpha_{i,exp} = N * [A_{i,CE} / \varepsilon_{CE}(E_{CE})] / [A\gamma / \varepsilon_{\gamma}(E_{\gamma})]$ Using a known conversion coefficient or assumed multipolarity $N = \alpha_{i,cal} * I_{\gamma,cal} / I_{i,cal}$

 $\Box \ \alpha_{K} \text{ from singles } \gamma \text{ and } K \text{ X-rays} \\ \alpha_{K} \ \omega_{K} = [N_{K} / N_{\gamma}] * [\epsilon_{\gamma} / \epsilon_{K}] \\ \Box \ \alpha_{tot} \text{ from intensity balance (singles/coincidence measurements)} \\ I_{\gamma}(1) * [1 + \alpha_{tot}(1)] = I_{\gamma}(2) * [1 + \alpha_{tot}(2)] \\ \text{For low energy / highly converted transitions} \\ \Box \ \text{etc } \dots \\ Always \text{ report details of the calibration} \end{cases}$

BrIccMixing - Multipolarity mixing ratio from ICC's

ICC for CE and IPF $\alpha(\pi'L'/\pi L) = \frac{\alpha(\pi L) + \delta^2 \alpha(\pi'L')}{1 + \delta^2}$

mixed character of the 9.2 keV transition in $^{227}\mathrm{Th}$

A. Kovalík ^{a, b} 쯔, A.Kh. Inovatov ^{a, c} 쯔, L.L. Perevoshchikov ^a 쯔, M. Ryšavý ^b 으 쯔, D.V. Filosofov ^a 쯔, P. Alexa ^d 쯔, |. Kvasil ^e 🖾

BrIccMixing - Multipolarity mixing ratio from ICC`s

ICC for CE and IPF

$$\alpha(\pi'L'/\pi L) = \frac{\alpha(\pi L) + \delta^2 \alpha(\pi'L')}{1 + \delta^2}$$

The first experimental evidence for the (M1 + E2) mixed character of the 9.2 keV transition in $^{\rm 227}{\rm Th}$

Volume 820, 10 September 2021, 136593

A. Kovalík ^{a, b} 쯔, A.Kh. Inoyatov ^{a, c} 쯔, L.L. Perevoshchikov ^a 쯔, M. Ryšavý ^b 쓴 쯔, D.V. Filosofov ^a 쯔, P. Alexa ^d 쯔, J. Kvasil ^e 쯔

BrIccMixing - Multipolarity mixing ratio from ICC`s

ICC of a Hydrogen-like ^{192m}Os

- A. Akber et al., Phys.Rev. C 91, 031301 (2015)
- ¹⁹⁷Au @ 478-492 MeV on 221 mg/cm2 ⁹Be; relativistic projectile fragmentation UNILAC & SIS-18 GSI
- Hydrogen like (one K electron only, Z=76) ^{192m}Os in storage ring

Angular distributions and correlations

Gamma-gamma angular correlation well understood, widely used

$$W(\gamma\gamma, E2 + M1) = P_0 + \frac{1}{1 + \delta^2} [A_2^e + 2\delta A_2 + \delta^2 A_2^m] P_2 + \frac{1}{1 + \delta^2} [A_4^e] P_4$$

A2 A4 can be calculated; "e" E2, "m" M1

Electron-gamma angular correlation

$$W(e\gamma, E2 + M1) = P_0 + \frac{1}{1 + p^2} [b_2^e A_2^e + 2pb_2 A_2 + p^2 b_2^m A_2^m] P_2 + \frac{1}{1 + p^2} [b_4^e A_4^e] P_4$$

b₂ b₄ particle parameters need to be calculated Hager-Seltzer Nucl. Data A4, 1 (1968)

 $p^2 = \delta^2 \times \alpha_{M1} / \alpha_{E2}$

Corrections using Monte Carlo

- $\circ~$ SINGLES: for angular distribution
- COINCIDENCES: for angular correlation
- PAIR CONVERSION: see T.K. Eriksen, PhD (ANU) 2018

BrIccEmis - atomic relaxation following nuclear decay B.Q. Lee & B.P.E. Tee

BrIccEmis - atomic relaxation following nuclear decay B.Q. Lee & B.P.E. Tee

2019

Review Clustered DNA Damages induced by 0.5 to **30 eV Electrons**

Yi Zheng ^{1,*} and Léon Sanche ²

Subcellular Targeting of Theranostic **Radionuclides**

Bas M, Bavelaar, Boon Q, Lee, Martin R, Gill, Nadia Falzone and Katherine A. Vallis* Frontiers in Pharmacology 2018, 9, 996.

New bread of delivery agents: subcellular targeted cancer treatment is a reality

BrIccEmis – atomic relaxation following nuclear decay B.Q. Lee & B.P.E. Tee

T. Kibédi, ANU

O_{1,2,3}

M2

M1

BrIccEmis – atomic relaxation following nuclear decay B.Q. Lee & B.P.E. Tee

BrIccEmis - atomic relaxation following nuclear decay B.Q. Lee & B.P.E. Tee

M. Alotiby, et al., J. Elect. Spectr. Rel. Phenom. 232 (2019) 73 B.P.E. Tee, et al., PRC 100 (2019) 034313

Thanks