

Introduction to Nuclear physics with high-power lasers

Medhi Tarisien

Joliot-Curie School 2021

October 3-8th, Saint Pierre d'Oléron, France

How a laser can have an effect on a nucleus?

2

How a laser can have an effect on a nucleus?

3

How a laser can have an effect on a nucleus? The laser

Light Amplification by Stimulated Emission of Radiation

Théodore Maiman : 1960 LASER rubis

How a laser can have an effect on a nucleus? The High power Laser

How a laser can have an effect on a nucleus?

 $E_{nucl} \approx 9.10^9 \frac{1,6.10^{-19}}{(10^{-15})^2} \approx 10^{19} \text{ V/cm}$

Which Intensities are requiered to have an effect on the atom? The nucleus?

How a laser can have an effect on a nucleus?

High power lasers

High power lasers

Chirped Pulse Amplification (CPA)

D. Strickland & G. Mourou

Nobel prize in Physics 2018

High power lasers

A contribution in Nucleosynthesis studies

Are nuclear reactions the same in a star as in a solid?

Nuclear physics in stellar medium

Take a star in a laboratory as a target

Take an accelerator and send some particle projectiles on the star

Detect the nuclear reaction signatures

Nuclear physics in stellar medium

Take a star in a laboratory as a target :

you can have one during ~1 ns only

High power lasers

Take an accelerator and send some particle projectiles on the star :

What should be the intensity of a proton beam for 10^{13} protons passing through the plasma target? (e = 1.6 10^{-19} C) | = ?

Detect the nuclear reaction signatures

Are nuclear reactions the same in a star as in a solid?

Little star

Nuclear physics in stellar medium

Take a star in a laboratory as a target :

you can have one during 1 ns only

High power lasers

Take an accelerator and send some particle projectiles on the star : What should be the intensity of a proton beam for 10^{13} protons passing through the plasma target? (e = 1.6 10^{-19} C) $I = 10^{13} \times 1.6 \ 10^{-19} \ C / 10^{-9} s = 1.6 \ kA$ accelerators Ultra-High Intensity : ~100 mA

Detect the nuclear reaction signatures

Little star

Nuclear physics with high-power lasers

- High power lasers and their interaction with matter
- Laser-Plasma Acceleration
- Nuclear Physics in plasmas
- Challenges to take up

Part 1

HIGH POWER LASERS AND THEIR INTERACTION WITH MATTER

- High power laser characteristics
- What is a Plasma ?
- Laser/plasma interaction

High power laser characteristics

$$I = \frac{E_L}{\Delta t.S}$$

Is it possible to decrease $S \rightarrow 0 \text{ cm}^2$ to increase $I \rightarrow \infty$?

High power laser characteristics

• LULI-PICO2000 has the following characteristics :

 $\lambda_{L}\text{=}1.053~\mu\text{m}$, M² = ~2, \varnothing_{beam} = 18 cm, E_L = 90 J, Δt = 1 ps

• It is focused with a parabola mirror of 800 mm focal distance

What is the ultimate focal spot diameter we can obtain? Which focal depth sensitivity? Which maximum intensity?

• LULI-PICO2000 has the following characteristics :

 λ_L =1.053 μm , M² = ~2, \varnothing_{beam} = 18 cm, E_L = 90 J, Δt = 1 ps

• It is focused with a parabola mirror of 800 mm focal distance

$$\tan \theta = \frac{180/2}{800} \qquad \rightarrow \theta = 0.112 \text{ rad} \qquad \pm Z_{\text{RMM}} \approx \pi \frac{(6\mu m)^2}{2 \times 1.053 \mu m} \approx \pm 54 \ \mu m$$

$$W_{0MM} = \frac{2}{\pi \times 0.122} \times 1.053 \ \mu m \approx 6 \ \mu m$$

$$\emptyset_{beam} \approx 12 \ \mu m$$

$$I_0 \approx \frac{2 \times 90 \ J}{10^{-12} \times \pi \times (6.10^{-4} cm)^2} \approx 1.6 \ 10^{20} \ W/cm^2$$

a0 : the normalized laser vector potential

Is the ratio of classical speed of electron accelerated by the electric field of the laser in the middle of the waist over light celerity

$$a_0 = \frac{v}{c}$$

 $0 \le a_0 < 1$ classical electron, linear regime $a_0 >> 1$ relativistic electron, non linear regime $a_0 \approx 1$: quasi-linear regime

$$a_0 = \sqrt{\frac{e^2 I \lambda_L^2}{2\pi^2 \varepsilon_0 m_e^2 c^5}} \approx 0.85 \left(\frac{I \lambda_{L\mu m}^2}{10^{18} W cm^{-2} \mu m^2}\right)^{1/2}$$

 \rightarrow L. Gremillet presentation

 $I_0 \simeq 10^{20} \text{ W/cm}^2$ 2E_L A laser pulse is preceded by $\Delta t \times \pi w_{2}^{2}$ pedestal Amplified : а Spontaneous Emission (ASE) The ration between the pre- I/I_0 Pulse pulse intensity and the main I/I_0 pulse one is called Contrast 10-2 10^{-2} The pedestal create a pre-plasma 10^{-4} contrast 10-4 -1 ps 0 10-6 Ionisation threshold - -1-0=8_ • ~10¹² W.cm⁻² Pedestal 0 -1 ns

Laser / solid target Interaction

I=10¹⁴ W/cm² a₀ = 9. 10⁻³

Laser / solid target Interaction

The high power laser pulses always interact with a plasma!

What is a plasma?

What is a plasma?

General behavior of a plasma

Plasma: a **quasi-neutral** gas of charged (electrons + ions, $n_i \approx n_e$) and neutral particles (atom less than 1% + photons) which exhibit <u>collective</u> behavior

- Charges move and generate local concentration of + or charges → E-fields.
 Also, motion of charges generates currents → B-fields.
- Fields affect motion of other particles far away
 → collective behavior
- Particles (charges) exchange momentum and energy through collisions. System tends to converge to equilibrium (Maxwell distributions, thermalisation).
- $m_e \ll m_i \rightarrow$ much shorter time-scale for electron dynamics. Ions follow by electrostatic effect on slower time scale.
- According to temperature, density and the time-scale, plasma dynamics are described kinetically (Particles-In-Cell -PIC) or as fluids (MagnetoHydroDynamics).

What is a plasma?

Fluid (MagnetoHydroDynamics).

Requires ns to create a dense and hot plasma

What is a plasma?

Fluid (MagnetoHydroDynamics).

- ۲
- Multiple collisions $\Delta t \Delta E \ge h/4\pi \rightarrow$ resonant phenomena are enhanced

What is a plasma?

Particles

Spatial and time scales

 \rightarrow Debye length:

Spatial-scale of deviation from electric neutrality around a multicharged ion

→ Plasma pulsation frequency:

(inverse of) time-scale of deviation from electric neutrality

 \rightarrow Critical density n_c :

If electrons oscillate faster than the laser, it can not propagate inside : $\omega p_e > \omega_L$

$$\begin{split} n_{c} &= \varepsilon_{0} \text{ me } \frac{\omega_{L}^{2}}{e^{2}} & \text{For PICO2000 } \lambda_{L} = 1052 \text{ nm}, \\ \text{In relativist regime : } n_{c\text{-rel}} &= \gamma \text{ n}_{c} & n_{c} = \gamma \text{ 10}^{21} \text{ e/cm}^{3} \end{split}$$

Laser / plasma interaction

Particles In Cell

Lasers do not move ions significantly, but they move electrons (ions too heavy)

$$\begin{split} \text{PICO2000} &: \lambda_{\text{L}} = 1052 \text{ nm in a plasma density of } 10^{19} \text{ e}^{-}/\text{cm}^{3}. \\ \rightarrow v_{\text{pe}} = 99.5\% \times \text{c} \\ \rightarrow \lambda_{\text{pe}} \approx 10.50 \text{ } \mu\text{m} \end{split}$$

Part 2

LASER-PLASMA ACCELERATION

- Electrons
- Photons
- lons
- Neutrons

Electron source

Particles In Cell

Lasers do not move ions significantly, but they move electrons (ions too heavy)

LULI-PICO2000 : $\lambda_L = 1052 \text{ nm}$; $\Delta t = 1 \text{ps}$ in a plasma density of $10^{19} \text{ e}^{-}/\text{cm}^3$. $\rightarrow v_{\text{pe}} = 99.50\% \times c$ $\rightarrow \lambda_{\text{pe}} \approx 10.5 \,\mu\text{m}$ $\rightarrow \text{Pulse length} = 298 \,\mu\text{m}$

Electron source

Divergence [°]

35

Electron source

For nuclear reactions, we need tens of MeV electrons in huge quantity for bremsstrahlung
Electron source from solid targets

M. Gerbaux et al,, Journal de Physique IV France, 133, 1139-1141 (2006)

Bremsstrahlung source

Laser driven ion source with solid targets

Laser driven ion source with solid targets

40

Laser driven ion source with solid targets

TNSA well known, reliable, suitable energies BUT not compatible with new generation of lasers

Laser driven ion source with gas jet targets

Because of high-repetition rate lasers (0,01-10 Hz)

10 PW every minute

1 PW every second

1 PW every 0.1 second

Target regeneration and alignment

- ✓ Less debris production (25 weeks of pico 2000 ≈ 2 min ELI-BL HAPLS@10Hz)
- ✓ Repeatability shot to shot
- ✓ Easy access to different ions
- Promote acceleration processes for high energies, high flux of ions and no maxwell distribution of energy

Laser driven ion source with gas jet targets

Ion acceleration processes

Laser driven ion source with gas jet targets

Laser driven ion source with gas jet targets

Laser driven ion source with gas jet targets

J.L. Henares, et al. Rev. Sci. Instrum. 90, 063302 (2019) J L Henares, J. Phys. : Conf. Ser. 1079 012004 (2018)

Laser driven ion source with gas jet targets

P. Puyuelo-Valdes, Proc. SPIE 11037, Laser Acceleration of Electrons, Protons, and Ions V, 110370B (2019) P. Puyuelo-Valdes, soumis à Phys. Of Plasma (2019)

Laser driven ion source with gas jet targets

Laser driven ion source with gas jet targets

107

0

10

20

30

Proton energy [MeV]

40

Experiment at GSI in November 2020 : structures of energy distribution confirmed, but energy around 1 - 2 MeV

49

60

70

50

J.-R. Marques, et al., Phys Plasma, 28, issue 2, (février 2021)

Laser driven ion source with other targets

Indirect Laser driven neutron source

Secondary source, the same as conventional accelerators

- Laser accelerated lons (protons, deutons) impinging a converter (Li; ²H; ³H ...)
- Bramsstrahlung radiation impinging a converter
- 2 GeV impinging a spallation target (not yet relevant)

A.R. Junghans, EJC "Neutrons and Nuclei », https://ejc2014.sciencesconf.org (2014)

Reaction	Neutron Energy (MeV)
p+ ⁷ Li → n+ ⁷ Be	[0.121 - 0.649]
p+T→n+³He	[0.6 - 2.6]
d+D→n+³He	$2.45 + f(E_{projectile})$
d+T→n+⁴He	\sim 14.1 + g(E _{projectile})

Neutron energy depends on the emission angle Require :

- a well define projectile beam axis
- A mono energetic projectile

Indirect Laser driven neutron source

Secondary source, the same as conventional accelerators

- Laser accelerated lons (protons, deutons) impinging a converter (Li; ²H; ³H ...)
- Bramsstrahlung radiation impinging a converter
- 2 GeV impinging a spallation target (not yet relevant)

	Laser	Acceleration process	Neutron production reaction	Number of neutrons/ shot	Neutron energies
Α	Vulcan : 200J, 3×10^{20} W/cm ²	TNSA : CD 10 μm	CD 2 mm : D(p,n+p) ¹ H ; D(d,n) ³ He	10 ⁹ /sr	[0-25] MeV
В	Trident : 60 J, 600 fs ; 10 ²¹ W/cm ²	BOA : CD 400 nm	Be ~ mm : Deuteron break-up, ⁹ Be(p,n) ⁹ B, ⁹ Be(d,n) ¹⁰ B	1.2×10 ¹⁰ /sr	[10-150] MeV
С	Elfie : 10 J, 350 fs ; 1.1×10 ¹⁹ W/cm ²	TNSA : CH 50 μm on 14 nm Al	LiF 2mm : ⁷ Li(p,n) ⁷ Be ; ⁶ Li(p,n) ⁶ Be ; ¹⁹ F(p,n) ¹⁹ Ne ;	~1×10 ⁴ /sr	[0.1-4] MeV

- A) S. Kar et al, New J. Phys. 18 053002, (2016)
- B) M. Roth et al, Journal of Physics: Conference Series 688, 012094, (2016)
- C) D.P. Higginson et al, PRL 115(5), [054802], (2015)

Indirect Laser driven neutron source

Secondary source, the same as conventional accelerators

- Laser accelerated lons (protons, deutons) impinging a converter (Li; ²H; ³H ...)
- Bramsstrahlung radiation impinging a converter
- 2 GeV impinging a spallation target (not yet relevant)

2 Facilities in Europe : ELBE at Dresden, Gemany and GELINA at Geel, Belgium.

	Target	Source Strength (s^{-1})	<i>E_e_</i> (MeV)	<i>I</i> _e _ (μA)	f(Hz)
nELBE	Pb, liquid	$3 \cdot 10^{11}$	30	15	$2 \cdot 10^5$
GELINA	U, Hg cooled	$3\cdot10^{13}$	100	96	800

n-ELBE : 10^6 neutrons in 4π from 5×10^8 electrons

Indirect Laser driven neutron source

Secondary source, the same as conventional accelerators

- Laser accelerated lons (protons, deutons) impinging a converter (Li; ²H; ³H ...)
- Bramsstrahlung radiation impinging a converter
- 2 GeV impinging a spallation target (not yet relevant)

The dreaming part...

Open your mind,.... breathe, ... take time to dream...

A versatile source

New type of nuclear physics experiments


```
Projectiles : 10^{13} particles on Ø 100µm spot ; cross section: 0,1 barn,
Primary target: 10^{21} nuclei/cm<sup>2</sup> (ex : 100µm thick carbon)
```

```
\rightarrow 10<sup>9</sup> unstable nuclei on Ø 100µm \leftrightarrow 10<sup>13</sup> nuclei / cm<sup>2</sup>
```

Wait ∆t then

Particle from source 2

Projectiles : 10^{13} particles on Ø 100µm spot ; cross section: 0,1 barn, secondary target: 10^{13} nuclei / cm²

 \rightarrow 10 reactions/shot ; 1 shot / min \rightarrow ~14 400 reactions/day

New type of nuclear physics experiments

~10 000 reactions/day (0.1 barn)

- ✓ Nuclear reactions on very short-lived radioactive nuclei (down to few ns)
- ✓ Nuclear reactions on excited nuclei
- ✓ BUT need to detect nuclear signal ⊗

New type of nuclear physics experiments

Beam transport difficult because charge space :

 ✓ 10¹³ protons @10 MeV in 1 mm diameter cylinder, flying in 100 ps bunch duration ↔ 1,6 kA in cylinder ; 5 .10⁻⁴ C/cm³

Part 3

NUCLEAR PHYSICS IN PLASMAS

- The interplay between atomic electrons and nucleus
- Cross section modifications
- Half life modification : case of ⁸⁴Rb

Nuclear excitation / de-excitation

65

- Half-life modified because of de-excitation processes
- But also because of excitation processes

Nuclear excitation / de-excitation Evidence of nuclear excitation in plasmas

- Laser created plasmas:
 - Temperature (LTE) range of 10 eV- few keV
- Nuclear excitations in plasmas can only studied in specific nuclei:
 - ► Low energy excited state: excitation energy E*~T
 - Isomeric state: lifetime longer than the plasma emission duration

> Very few candidates (~ 10 stable nuclei with E*<15 keV)

	⁴⁵ Sc	¹⁶⁹ Tm	¹⁸¹ Ta	²⁰¹ Hg	⁸³ Kr	⁷³ Ge	⁵⁷ Fe	¹⁸⁷ Os	²³⁵ U	²⁰⁵ Pb
E* (keV)	14.2	8.4	6.2	1.55	9.4	13.3	14.4	9.7	0.077	2.3
T _{1/2}	318 ms	4.1 ns	6.1 µs	81 ns	154ns	2.9 µs	98 ns	2.4 ns	27 m	24 µs

C.Granja et al. Nucl. Phys. A 784,1 (2007)

Nuclear excitation / de-excitation Evidence of nuclear excitation in plasmas

Experiments are challenging: Experiments on stable nuclei

- Nuclear excitation cross sections are orders of magnitude smaller than atomic ones
- Low signal and high background !
- ▶ Isomeric state: weakly coupled state \rightarrow excitation more difficult for this state

	Nucleus	¹⁸¹ Ta	²³⁵ U	⁵⁷ Fe
	E* (keV)	6.2	0.077	14.4
	T _{1/2}	6.1 μs	27 m	98 ns
	Process	Direct excitation	🔥 NEET	Direct excitation
Gob Spol And	et et al., J.Phys. B hr et al., Mod Opt reev et al., JETP 9	41 , 145701 (2008) 5 3 2633 (2006) 1 , 1063 (2000)	Claverie et al, Phys. R Bouns et al. Phys. Rev	 Chefonov et al. Laser Phys. 24 Golovin et al. Quant. Electro. 4 ev. C 70,044303 (2004) C, 46,852 (1992)
			Arutyunyan et al., Sov.J.NP 53 , 23 (1991)	
			Izawa et al, Phys. Lett	. 88B ,59 (1979)

> Up to now: no clear evidence of nuclear excitation in plasmas

Nuclear Physics with lasers

Cross section modifications on excited nucleus

What would be changed in a plasma?

M.Q. Buckner et al, Phys. Rev. C, 95, 061602(R) (2017)
Nuclear Physics with lasers

Cross section modifications on excited nucleus

What would be changed in a plasma?

Nuclear Physics with lasers

Cross section modifications on excited nucleus

What would be changed in a plasma?

	Neutron energy	^{235m} U(n,f) / ²³⁵ U(n,f)
T _{1/2} = 27 min	< 25 meV	1,61 +/- 0,44
^{1/2+} 76.8 eV	50 meV	2,47 +/- 0,45
7/2-		

A. D'Eer et al, Phys. Rev. C 38, 1270 (1988)

235

Half-life of an excited state

What would be changed in a plasma?

Half-life of an excited state

 $^{125}_{52}\mathrm{Te}\,1^{\mathrm{er}}$ état excité à 35,5 keV

Q	T _{1/2} (ns)	E _l (K) (keV)
0 (neutral)	1,49	31,8
48+	11 ± 2	36,6

F. Attallah et al. Phys. Rev. Lett. 75,1715

Half-life of an excited state

$^{125}_{52}$ Te 1 ^{er}	état	excité	à	35.5	keV
52 ± 01	Clai	CAULT	u	00,0	

Q	T _{1/2} (ns)	E _l (K) (keV)	
0 (neutral)	1,49	31,8	
48+	11 ± 2	36,6	

Charge state can modify apparent nuclear properties

F. Attallah et al. Phys. Rev. Lett. 75,1715

Half-life of an excited state

Isomer state E= 671 keV

- •T_{1/2}= 26.3 ns in neutral atom
- •« Stable » in fully stripped ion : Kr³⁶⁺

Half-life of an excited state

Astrophysical consequences : S process and abundances

Half-life of an excited state

Astrophysical consequences : S process and abundances

Half-life of an excited state

Half-life of an excited state

The abundance ratio between ¹⁷⁶Hf / ¹⁷⁷Hf is modified in a hot plasma⁸²

Half-life of an excited state Demonstration of T_{1/2} modification in a plasma : ⁸⁴Rb case

D.Denis-Petit et al. Ch.21, Applications of Laser-Driven Particle Acceleration, Eds. Parodi, Bolton, Schreiber, CRC press, ISBN 9781498766418 (2018) 83

Half-life of an excited state Demonstration of T_{1/2} modification in a plasma : ⁸⁴Rb case

D.Denis-Petit et al. Ch.21, Applications of Laser-Driven Particle Acceleration, Eds. Parodi, Bolton, Schreiber, CRC press, ISBN 9781498766418 (2018) 84

Half-life of an excited state Demonstration of T_{1/2} modification in a plasma : ⁸⁴Rb case

ISOMEX code based on a Relativistic Average Atom Model under LTE hypothesis. All the ions in plasmas are described by one average ion : still valid for resonant processes in light nucleus?

Half-life of an excited state

NEET : Nuclear Excitation by Electronic Transition

- •Difference with photoexcitation: takes place in a single ion
- •Nuclear and atomic transitions must be resonant
- •Transitions with same multipolarities
- •Observed in neutral target: ¹⁹⁷Au, ¹⁸⁹Os and ¹⁹³Ir

Kishimoto et al., Phys. Rev. Lett, **85**, 1831 (2000) Ahmad et al., Phys. Rev. C, **61**, 051304 (2000) Kishimoto et al., Nucl. Phys. A, **748**, 3 (2005)

•Not observed in plasmas: predictions

Morel et al., Phys. Rev. A.**69**, 063414 (2004) Harston et al., Phys. Rev. C, **59**, 2462 (1999)

Partial level scheme of ⁸⁴Rb nucleus

Half-life of an excited state NEET rate estimation

D. Denis-Petit et al.,Phys. Rev. C 96, 024604 (2017)

D. Denis-Petit et al., Journal of Quantitative Spectroscopy and Radiative Transfer 148 70-89 (2014)

Half-life of an excited state NEET rate estimation

But uncertainties exist on atomic calculations and nuclear transitions measurements 88

Half-life of an excited state NEET rate estimation

NEET rate evolution depending of uncertainty parameter Δ:

Half-life of an excited state NEET rate estimation

NEET rate evolution depending of uncertainty parameter Δ:

Partial level scheme of ⁸⁴Rb nucleus

Calculations not precise enough and can not deny the excitation \rightarrow experiment needed

D. Denis-Petit et al. Phys. Rev. C 96, 024604 (2017)

Half-life of an excited state ⁸⁴Rb experiment

ELI-Beamlines, Prague

30J ; 30 fs @10Hz

1.5 kJ ; 1 ns @ 1 tir/min

Half-life of an excited state ⁸⁴Rb experiment

 $^{\sim}10^8$ nuclei of ^{84m}Rb produced in a $^{\sim}5$ mm diameter and 3 μm thick layer

D.Denis-Petit et al. Ch.21, Applications of Laser-Driven Particle Acceleration, Eds. Parodi, Bolton, Schreiber, CRC press, ISBN 9781498766418 (2018) F. Negoita et al., Romanian Reports in Physics, Vol. 68, Supplement, P. S37–S144, 2016

Half-life of an excited state ⁸⁴Rb experiment

D.Denis-Petit et al. Ch.21, Applications of Laser-Driven Particle Acceleration, Eds. Parodi, Bolton, Schreiber, CRC press, ISBN 9781498766418 (2018) F. Negoita et al., Romanian Reports in Physics, Vol. 68, Supplement, P. S37–S144, 2016

Part 4

CHALLENGES TO TAKE UP

- The detection in high power laser environment
- High repetition rate lasers

The detection in high power laser environment

The detection in high power laser environment

J.-L. Dubois, et al., Phys. Rev. E 89, 013102 (2014).

- ✓ Physical signals in detectors :
- E ~ 0.1 J (~10¹² MeV) in few ns P ~ 100 MW

```
Φ ~10<sup>8</sup> W/cm<sup>2</sup>
```

✓ Electro Magnetic Pulse (EMP) Susceptibility

The detection in high power laser environment

Fig. 3. Typical pictures of etched track pits caused by two different particles. (a) 5.4-MeV α particles (b) ~0.9-MeV protons. JY.LEE et al. ; Journal of the Korean Physical Society, Vol. 51, No. 1, July 2007

Counting the number of tracks

Gafchromic ©

Use passive Optical Density measurement

RCF

IP

detectors

- Physical signals in detectors :
- E ~ 0.1 J (~10¹² MeV) in few ns P ~ 100 MW Φ ~10⁸ W/cm²
- ✓ Electro Magnetic Pulse (EMP) Susceptibility

The detection in high power laser environment

The detection in high power laser environment

For nuclear physics studies $\rightarrow \gamma$ spectroscopy

• X ray Shielding ?

✓ A lot of soft X rays

✓ Still 40 GeV energy deposition in LaBr₃ through 10 cm thick Pb shield

 ✓ A 10µm diameter hole @20 cm let pass through 1MeV deposit in a LaBr3 detector

 \rightarrow We need a sealed shielding , but not compatible with detection of few photon detection of ~100s of keV

The detection in high power laser environment A test experiment

F. Negoita et al., AIP Conference Proceedings 1645, 228 (2015)

The detection in high power laser environment A test experiment

M.Tarisien, et al., IEEE Transactions on Nuclear Science, Vol 65, issue 8, p.2216-2219 (2018)

The detection in high power laser environment A test experiment

M.Tarisien, et al., IEEE Transactions on Nuclear Science, Vol 65, issue 8, p.2216-2219 (2018)

The detection in high power laser environment

Origin of long dead time?

Afterglow is mainly responsible of long dead time

The detection in high power laser environment

We are doing Instrumental research : (E. Atukpor Thesis)

High repetition rate lasers

High energy and long pulse lasers for the production of hot (T~0.1-1 keV) and dense (~10⁻² g/cm³) plasmas

Intense lasers for particle acceleration :

- Electrons (from the 90s); E_{max}e- ~GeV currently
- lons (from the 2000's); E_{max}protons ~100 MeV currently

Laser	Localisation	Energie (Joules)	Durée du pulse (fs)	Puissance (TW)	Intensité (W/cm²)	Cadence (Hz)	aO
CENBG	Bordeaux	1	9000000	1,E-04	1E+13	10	0,003
Apollon F3	Paris-Saclay	200	1000000	0,2	1E+15	0,02	0,0
PHELIX long	Darmstadt	1 000	5000000	0,2	1E+15	0,0002	0,0
ELI-BL ATON L4	Prague	1 500	1000000	1,5	8E+15	0,02	0,1
LULI 2000	Paris-Saclay	1600	1500000	1,1	1E+16	0,0001	0,0
MegaJoule	Bordeaux	1 300 000	3200000	406	6E+16	0,000006	0,2
Eclipse (upgrade)	Bordeaux	1,5	30	50	3,E+19	1	3,7
Eclipse (upgrade) ELI-BL HAPLS	Bordeaux Prague	1,5 30	30 30	50 1000	3,E+19 3E+20	1 10	3,7 16,0
Eclipse (upgrade) ELI-BL HAPLS VEGA3	Bordeaux Prague Salamanque	1,5 30 30	30 30 30	50 1000 1000	3,E+19 3E+20 1E+21	1 10 1	3,7 16,0 31,9
Eclipse (upgrade) ELI-BL HAPLS VEGA3 PICO 2000	Bordeaux Prague Salamanque Paris-Saclay	1,5 30 30 60	30 30 30 1000	50 1000 1000 60	3,E+19 3E+20 1E+21 5E+19	1 10 1 0,0003	3,7 16,0 31,9 4,6
Eclipse (upgrade) ELI-BL HAPLS VEGA3 PICO 2000 PHELIX short	BordeauxPragueSalamanqueParis-SaclayDarmstadt	1,5 30 60 130	30 30 30 1000 500	50 1000 1000 60 260	3,E+19 3E+20 1E+21 5E+19 4E+20	1 10 0,0003 0,0002	3,7 16,0 31,9 4,6 18,1
Eclipse (upgrade) ELI-BL HAPLS VEGA3 PICO 2000 PHELIX short Apollon F1	Bordeaux Prague Salamanque Paris-Saclay Darmstadt Paris-Saclay	1,5 30 60 130 150	30 30 30 1000 500 15	50 1000 1000 60 260 10000	3,E+19 3E+20 1E+21 5E+19 4E+20 1E+22	1 10 1 0,0003 0,0002 0,02	3,7 16,0 31,9 4,6 18,1 76,7
Eclipse (upgrade) ELI-BL HAPLS VEGA3 PICO 2000 PHELIX short Apollon F1 TITAN	Bordeaux Prague Salamanque Paris-Saclay Darmstadt Paris-Saclay Livermore	1,5 30 60 130 210	 30 30 30 30 500 5000 	50 1000 1000 60 260 10000 42	3,E+19 3E+20 1E+21 5E+19 4E+20 1E+22 2E+19	1 10 1 0,0003 0,0002 0,0002 0,0006	3,7 16,0 31,9 4,6 18,1 76,7 4,4

High repetition rate lasers

 Lasers belong to laboratories → small teams, all lasers are different; lots of competition between sites. The only real international facilities are the ELI pillars.

High repetition rate lasers

Conclusions

- Lasers: unique tools to study nuclear properties in extreme condition: it creates both targets and projectiles
- Lots of teams working on Laser-plasma acceleration ; very few from accelerators and nuclear physics community. Accessible application is radio-isotope production
- Evaluation of nuclear excitations rates in plasma is complex
 - Description of the plasma
 - Accurate characterization of the nuclear and atomic transitions required
- ^{84m}Rb: a good candidate to evidence nuclear excitations in plasma
 - Nuclear transition characterised (2 experiments and shell model calculations)
 - Atomic physics in plasma well described and experimentally validated
 - Estimation uncertainties too high, need experimental evidence : ELI-BL with two laser beams
- The main issue remains the detection in such perturbated environment