

THE INTERPLAY BETWEEN ATOMIC ELECTRONS AND THE NUCLEUS TRAPS, LASERS, SPECTROSCOPY

OCTOBER 3-8, 2021

SAINT-PIERRE D'OLERON, FRANCE

Laser spectroscopy for structure physic

Jain Moore (iain.d.moore@jyu.fi)

Department of Physics, University of Jyväskylä, Finland

Lecture 2:

- Laser resonance ionization
- Optical spectroscopy and the "achilles" tendon" Z=82

A radioactive ion beam toolbox

The Isotope Separation On-Line method

JYU. Since 1863.

I.D. Moore, EJC 2021

The in-flight method

The (IG)ISOL / gas catcher (hybrid) method

- Extraction of ions in gas flow (ion guide), or electrical fields (gas catcher)
- For the IGISOL method the (stopping) efficiency is relatively low, poor selectivity
- Universal method of radioactive ion beam production

Universality – an advantage and a drawback

<image>

CE079 IRMI (c) www.visualphotos.com

Gas catcher, Argonne National Lab

Your favorite exotic nucleus

Selectivity – why do we care?

JYU. Since 1863.

Element selectivity – the atomic fingerprint

V.N. Fedosseev, Y. Kudryavtsev, V.I. Mishin, Phys. Scr. 85 (2012) 058104

I.D. Moore, EJC 2021

UNIVERS

Pulsed tunable solid-state (Ti:sapphire) laser system, 10 kHz rep rate Mainz, JYFL, TRI UMF, I SOLDE, GANI L...

Brief pause, let's take a moment to enjoy the company of this exotic (locally bred) animal....

What is optical (laser) spectroscopy?

 $= \frac{\lambda^2}{2\pi} \left\{ \frac{1}{1 + [4\pi\tau(\nu - \nu_0)]^2} \right\}$

UNIVERSITY OF JYVÄSKYLÄ

σ ≈λ²/2π

Detection of single trapped barium ions

A trapped Ba⁺ ion cloud with estimated number <50 ions in the cloud

W. Neuhauser et al, PRL 41 (1978) 233

Ruben will discuss barium as an example of a precision measurement

Individual trapped laser-cooled Ba⁺ ions (Courtesy of the TRIµP group, former KVI)

Resonance ionization spectroscopy (RIS)

In a variant to laser ionization for RIB production, we can tune the laser frequency of a chosen transition = Resonance Ionization Spectroscopy (RIS). The lasers are sent into the ion source and the wavelength of an atomic excitation step is scanned.

B. Marsh et al., Nature Phys. 14 (2018) 1163

The ``achilles heel ´´ of optical spectroscopy

The observed transition linewidth can be broadened by Doppler effects

Thermal motion is a Maxwell-Boltzmann probability distribution. Causes a spread of frequencies observed by atoms

$$P(f)df \propto \exp(-\frac{mc^2(f-f_0)^2}{2k_bTf_0^2})df$$

$$\Delta_{FWHM} = f_0 \sqrt{\frac{8k_b T \ln 2}{mc^2}}$$

Doppler broadening

Natural linewidth 35 MHz; spectral linewidth 2.4 GHz (in oven), 170 MHz (crossed beams configuration)

The Doppler broadening is often comparable or greater than HFS or IS!

Crossed atomic beam laser spectroscopy

Incident laser beam interacts perpendicularly with a collimated beam of atoms. Resonant photons are detected orthogonally.

D.H. Forest et al., J. Phys. G 41 (2014) 025106

Power broadening

Another source is due to the laser intensity – power broadening.

V. Sonnenschein, I.D. Moore et al., EPJA 48 (2012) 52

- For RIB production: optimum efficiency
- For spectroscopy we trade efficiency for spectroscopic resolution

$$\Gamma_{power} = \Gamma_{nat} \sqrt{1 + I/I_{sat}}$$

Pressure broadening (in-gas cell RIS)

In a similar drawback to the ISOL (hot cavity) approach, the spectral resolution of an atomic resonance suffers within the gas cell – pressure broadening and shifts due to collisions with buffer gas atoms.

T. Sonoda et al., NIMB 267 (2009) 2918

JYU. Since 1863.

I.D. Moore, EJC 2021

In-gas cell RIS of stable tin isotopes

For more details, please visit the poster of J. Romero!

Gas jets: a cold environment for spectroscopy

Spectroscopy

Current efforts are invested into exploiting the gas-jet enviroment, in combination with state-of-the-art (injection-seeded) laser systems

JYU. Since 1863.

I.D. Moore, EJC 2021

Brief pause, enjoy scenary and spot the local camouflage

Collinear beams laser spectroscopy

In a collinear geometry, light, whether coor counter-propagating with the ion beam, interacts with accelerated ionic ensembles.

1. Accelerate all ions to energy E

$$E = eV = \frac{1}{2}mv^2$$

2. The energy spread δE (from source) remains constant

$$\delta E = \delta(\frac{mv^2}{2}) = mv\delta v = const.$$

3. The corresponding velocity spread is decreased and we obtain the Doppler width (in frequency):

$$\delta v_D = v_0 \frac{\delta E}{\sqrt{2eVmc^2}}$$

S.L. Kaufmann, Opt. Comm. **17** (1976) 309 W.H. Wing et al., PRL **36** (1976) 1488

The effect of the velocity compression

UNIVERSITY OF JYVÄSKYLÄ

Typical ion source energy spreads are ~1 eV. Acceleration of medium-mass nuclei to 30 keV produces a 3 order of magnitude velocity compression

Doppler tuning the ion/atom beam

ν

 v_0

Ion

Source

Separator

(30-60 kV)

Count rates for low flux ion beams

The collinear beams technique has high sensitivity. All ions/atoms pass through the laser beam and contribute to the fluorescent signal.

However.....

Signal (laser on resonance) = 1 photon detected per 1,000 ions in beam

Background (laser light scatter) = 200 photons / sec (per mW of laser light)

Low-flux beams (1,000 ions / sec): background must be suppressed to see signal.

Photon-ion coincidence technique

The laser-ion interaction region

Accept photons in delayed coincidence with the corresponding ion (or atom). Position sensitivity along the detection region can enhance the time resolution (to ~20 ns).

D.A. Eastham et al., Opt. Commun. 82 (1-2) (1991) 23

Bunched beam spectroscopy

Accept photons in a time window during which the bunched beam passes. Temporal background compression of $\sim 10^4$ routinely achieved.

P. Campbell et al., PRL 89 (2002) 082501

Photon-ion coincidence vs. bunched beams

B. Cheal and D.H. Forest, Hyp. Int. 223 (2014) 63

E. Mané et al., *PRC* **84** (2011) 024303

UNIVERSITY OF JYVÄSKYLÄ

Complementarity in the techniques

IN-SOURCE (RIS)

- Selective process
- Short lifetimes, low yields (<1 ion/s)
- High detection efficiency
- Poor resolution (100-1000× < CLS)

COLLINEAR

- High resolution
- Scanning voltage, not frequency
- Detect photons
- Beams of some 10³ ions/s

- In-source laser spectroscopy at ISOLDE used for a low-resolution probe of ⁷⁵Cu HFS
- High-resolution collinear laser spectroscopy resolved both atomic ground and excited state HFS

K.T. Flanagan et al., Phys. Rev. Lett. 103 (2009) 142501

Certainly not the end of the story....

Collinear resonance ionization spectroscopy

CRIS: improving the experimental sensitivity by ×300...

R.P. de Groote et al., Phys. Rev. C 96 (2017) 041302(*R*)

Poster of Sonja Kujänpää – recent results from CRIS & RAPTOR development

We have work to do so welcome new faces!

- Summary
 - Laser spectroscopy of radioactive nuclei features (or is planned) at almost all online radioactive ion beam facilities
 - Our spectroscopy can be performed at both ISOL (traditional) as well as fragmentation facilities (via gas catcher developments)
 - Element selectivity is critically important in RIB production and laser ion sources are widely used/planned (ISOL)
 - Lower-resolution in-source methods are complementary to highresolution techniques and are often used "together"
 - New techniques both in ion and optical manipulation as well as laser developments help to keep the field thriving
 - Many techniques not discussed (ion/atom traps, MIRACLS...), other variants in the detection techniques of the collinear method

How do we develop the ionization scheme

On-line atomic spectral line databases, published spectroscopy work.

- R.L. Kurucz' CD-ROM 23 Atomic Line Database: <u>http://www.pmp.uni-hannover.de/cgi-bin/ssi/test/kurucz/sekur.html</u>
- NIST atomic spectral line database: <u>http://www.nist.gov/pml/data/asd.cfm</u>
- Blaise and Wyart (actinides): <u>http://web2.lac.u-psud.fr/lac/Database/Contents.html</u>

UNIVERSITY OF JYVÄSKYLÄ

From the optical table to the ion source

JYU. Since 1863.

I.D. Moore, EJC 2021

How do we quantify the optical selectivity?

The excitation probability of an atom in a laser beam whose frequency is tuned near resonance:

$$P \propto \frac{1}{\delta^2 + \frac{\Gamma^2}{4}}$$

$$\begin{split} &\delta = \omega_L - \omega_{0,} \\ &\Gamma \text{ is the interaction linewidth} \end{split}$$

When the laser is in resonance with a selected isotope and but far from other "contaminating" elements or isotopes (Δ), the selectivity *S*

$$S \sim 4 \times \frac{\Delta^2}{\Gamma^2}$$

Pd isotopes $\Gamma \sim 3$ MHz, $\Delta \sim 100$ MHz (neighbouring isotopes): $S \sim 4000$

 $\Delta \sim 10^{15}$ Hz (palladium to silver): S ~10¹⁷ !!!

Multi-step excitation: $S = S_1 \cdot S_2 \dots \cdot S_n$.

I.D. Moore, EJC 2021