Laser spectroscopy for nuclear structure physics

Ruben de Groote ruben.degroote@kuleuven.be

Outline

- Lecture 1: History, nuclear fingerprints, shapes and radii
- Lecture 2: Optical spectroscopy, laser ionization, Doppler-free approaches, ...
- Lecture 3: Magnetic moments as probes of nuclear structure: a case study
- Lecture 4: Super efficient, super precise: two examples!
 - Here we can talk about all the higher order things that lain has been building up suspense for

- Precision measurements of atomic excitations allow us to learn about nuclear structure
- Shift of a line from one isotope to the next
 - = isotope shift

KU LEUVEN

- Precision measurements of atomic excitations allow us to learn about nuclear structure
- Shift of a line from one isotope to the next

= isotope shift

$$\delta \langle r^2
angle = rac{1}{F} [\,
u^{AA'} - (K_{
m NMS} + K_{
m SMS}) rac{m_A - m_{A'}}{(m_A + m_e) m_{A'}}] \, .$$

• Hyperfine interaction:

$$E(F) = \frac{A}{2}C + B^{\frac{3}{4}}C(C+1) - I(I+1)J(J+1)$$

where $C = F(F+1) - I(I+1) - J(J+1)$
Measured Nuclear * atomic

(I = I)Isotope 1 **Model Independent** isotope shifts Counts (measured) Sizes (I = 0)Isotope 2 Counts Q_{s} \square (I > 0, 1/2)Isotope 3 <u>entroid</u> Spins Counts HES μ Relative Frequency (MHz)

KU LEUVEN

Unit conversions...

Optical transitions: 100's of THz, a few eV, 10000s of cm⁻¹, 100s of nm

Hyperfine splitting: 100's of MHz, a few μ eV, ~0.01 cm⁻¹ Optical linewidth: 100's of MHz, a few μ eV, ~0.01 cm⁻¹

1 cm⁻¹: ~ 30000 MHz

1eV: ~ 8000 cm⁻¹

- Laser spectroscopy techniques
 - use a laser to excite atoms or ions,
 - ideally with sufficient resolution to resolve the hyperfine structure and/or isotope shift,
- They differ in
 - · how these optical excitations are detected
 - · the conditions the atoms or ions find themselves in

In-source techniques

- Excitation is converted into ionization by adding additional lasers
- Close to the site of radioactive isotope production – environment strongly affects spectroscopy!

Collinear techniques

 Isotopes are accelerated prior to the measurement to a few keV energy – doppler-free!

Incident

photon

 Many variants exist, e.g. fluorescence detected, CRIS, using laser polarization, ...

~10⁻¹⁵ m

- Isotopes are carefully manipulated and held 'still' inside an atom or ion trap
- At RIB facilities: predominantly used for precision experiments (parity violation, weak interaction studies, ...)

Hyperfine levels

Methods to measure moments, radii, spins:

lifetime dependence / production method

From the definition:

$$\overline{\boldsymbol{\mu}}^{\pi} = g_{L}^{\pi} \overline{\boldsymbol{L}}_{\pi} + g_{S}^{\pi} \overline{\boldsymbol{S}}_{\pi} = g^{\pi} \overline{\boldsymbol{I}}_{\pi}$$

We can see that the magnetic moment depends on the orbital and spin angular momentum.

Protons:	g _I = +1	$g_s = +5.586$			
Neutrons:	$g_I = 0$	g _s = -3.826			
(These are values for a <i>free</i> proton/neutron)					

Measuring a magnetic moment is an excellent way to learn more about the wavefunction/configuration of the nucleus.

Magnetic dipole

Assume a single, unpaired nucleon outside of a core that it does not interact with at all.

All nucleons inside the nucleus neatly pair up to spin zero, thus not contributing to the magnetic moment, and we find:

$$\mu_{\rm sp} = \mu_{\rm N} \left[g_l j + \frac{1}{2} (g_s - g_l) \right] \qquad \text{for } j = l + \frac{1}{2}$$
$$\mu_{\rm sp} = \mu_{\rm N} \left[g_l j - (g_s - g_l) \frac{j}{2j + 2} \right] \qquad \text{for } j = l - \frac{1}{2}$$

These expressions summarize the so-called **Schmidt moments**.

Note:

13/2

- Protons: larger values
- Moment depends very strongly on the relative alignment of spin and orbital moment!
- Relative to our experimental accuracy (to be discussed next), these are very large differences in µ for a given configuration

• Experimentally, we find the general trend is correct, but there is a consistent deviation from Schmidt lines

• $g_s = 0.7 g_{s,free}$

- Nucleons are not free but are embedded in nuclear medium
- Configuration mixing: our assumption of a perfect single-particle behaviour is imperfect.

- Zinc has 30 protons
- Singly-charged Zn: difficult wavelengths
- Neutral zinc therefore has 30 electrons
- Atomic structure: <u>https://physics.nist.gov/PhysRefData/ASD/</u> <u>levels_form.html</u>
 - Filled atomic d-shell
 - Two valence electrons can be placed in 4s, 4p, 5s, 5p, ... to form lowestenergy atomic states

Configuration	Term	J	Level (cm ⁻¹)	Uncertainty (cm ⁻¹)
3d ¹⁰ 4s ²	¹ S	0	0.0000	0.0019
o 10 c c	2=0			
3 d 104s4p	۶Þ	0	32 311.3176	0.0010
		1	32 501.3990	0.0000
		2	32 890.3267	0.0009
3d ¹⁰ 4s4p	¹ P°	1	46 745.4032	0.0024
3 d ¹⁰ 4 s 5s	³ S	1	53 672.2398	0.0008
3 d ¹⁰ 4 s 5s	¹ S	0	55 789.216	0.003
3d ¹⁰ 4s5p	³ Р°	0	61 247.866	0.005
		1	61 274.419	0.004
		2	61 330.845	0.003

Spectroscopy from ground state?

Ground state: J=0
 => no sensitivity to nuclear moments:
 there is no hyperfine splitting!

Configuration	Term	J	Level (cm ⁻¹)	Uncertainty (cm ⁻¹)
3 d ¹⁰ 4 s ²	¹ S	0	0.0000	0.0019
3d ¹⁰ 4s4p	³P°	0	32 311.3176	0.0010
· ·		1	32 501.3990	0.0000
		2	32 890.3267	0.0009
3d ¹⁰ 4s4p	¹ P°	1	46 745.4032	0.0024
3d ¹⁰ 4s5s	³ S	1	53 672.2398	0.0008
3d ¹⁰ 4s5s	¹ S	0	55 789.216	0.003
3d ¹⁰ 4s5p	³ Р°	0	61 247.866	0.005
		1	61 274.419	0.004
		2	61 330.845	0.003

Spectroscopy from ground state?

- Ground state: J=0
 => no sensitivity to nuclear moments
- Only option is a transition to J = 1*
 => J = 1: hyperfine structure will only contain three peaks, not enough to get isotope shift, A, B and nuclear spin
 (4 parameters with only three measurable frequencies)

Configuration	Term	J	Level (cm ⁻¹)	Uncertainty (cm ⁻¹)
3d ¹⁰ 4s ²	¹ S	0	0.0000	0.0019
3d ¹⁰ 4s4p	³ Р°	0	32 311.3176	0.0010
		1	32 501.3990	0.0000
		2	32 890.3267	0.0009
3d ¹⁰ 4s4p	¹ P°	1	46 745.4032	0.0024
3d ¹⁰ 4s5s	³ S	1	53 672.2398	0.0008
3 d ¹⁰ 4 s 5 s	¹ S	0	55 789.216	0.003
3d ¹⁰ 4s5p	³ Р°	0	61 247.866	0.005
		1	61 274.419	0.004
		2	61 330.845	0.003

• So: not ideal.

Spectroscopy from ground state?

• Not ideal.

Luckily, there is a long-lived metastable state!

Configuration	Term	J	Level (cm ⁻¹)	Uncertainty (cm ⁻¹)
3d ¹⁰ 4s ²	¹ S	0	0.0000	0.0019
3d ¹⁰ 4s4p	³ Р°	0	32 311.3176 32 501 3990	0.0010
		2	32 890.3267	0.0009
3d ¹⁰ 4s4p	¹ P°	1	46 745.4032	0.0024
3 d ¹⁰ 4 <i>s</i> 5 <i>s</i>	³ S	1	53 672.2398	0.0008
3d ¹⁰ 4s5s	¹ S	0	55 789.216	0.003
3 d ¹⁰ 4 s 5p	³ Р°	0	61 247.866	0.005
		1	61 274.419	0.004
		2	61 330.845	0.003

Luckily, there is a long-lived metastable state!

Furthermore, convenient optical transition

4s 4p ³P⁰ -> 4s 5s ³S₁

Pro:

- 418 nm: easy wavelength with modern Ti:sapphire laser systems
- J = 2 to J = 1: measuring all observables a priori possible
- Transition excites a 4p electron to 5s: expect large field shift

Con:

• Producing atoms in a metastable state?

Configuration	Term	J	Level (cm ⁻¹)	Uncertainty (cm ⁻¹)
3d ¹⁰ 4s ²	¹ S	0	0.0000	0.0019
3d ¹⁰ 4s4p	³ P°	0	32 311.3176	0.0010
		2	32 890.3267	0.0009
3d ¹⁰ 4s4p	¹ P°	1	46 745.4032	0.0024
3 d ¹⁰ 4 s 5s	³ S	1	53 672.2398	0.0008
3d ¹⁰ 4s5s	¹ S	0	55 789.216	0.003
3d ¹⁰ 4s5p	³ Р°	0	61 247.866	0.005
		1	61 274.419	0.004
		2	61 330.845	0.003

A note on high angular momenta...

- A transition involving high angular momenta is good for sensitivity to spins and moments
- But it comes at a cost! Signal strength is spread over many peaks.
- Even with super high production rates, these kinds of measurements on radioactive isotopes are simply not feasible.

Brief aside about tunable cw lasers...

- We want to match the Doppler width of the resonance (few MHz), so we use lasers with a similar bandwidth (<MHz for ring cavity continuous-wave lasers)
- Depending on the wavelength we need different laser gain mediums
- Frequency doubling and even quadrupling is used to make blue and UV wavelengths as well

How do we develop the ionization scheme

Literature Search

On-line atomic spectral line databases, published spectroscopy work.

- R.L. Kurucz' CD-ROM 23 Atomic Line Database: http://www.pmp.uni-hannover.de/cgi-bin/ssi/test/kurucz/sekur.html
- NIST atomic spectral line database: <u>http://www.nist.gov/pml/data/asd.cfm</u>
- Blaise and Wyart (actinides): http://web2.lac.u-psud.fr/lac/Database/Contents.html

KU LEUVEN

Case study – zinc isotopes 1. production

- Nuclear reactions induced by high-energy beam hitting a target
- Fission of uranium or thorium provides access to many neutron-rich isotopes, including e.g. Zn!
- Picking a suitable reaction is one thing, but the next issue is how to get those reaction products from the target to the experimental setup quickly

Case study – zinc isotopes 1. production

- Nuclear reactions induced by high-energy beam hitting a target
- Fission of uranium or thorium provides access to many neutron-rich isotopes, including e.g. Zn!
- Laser ionization and mass separation is used to only select the isotope of interest, and reduce the amount of unwanted isotopes, molecules,... in the beam

Case study – zinc isotopes 1. production

- Nuclear reactions induced by high-energy beam hitting a target
- Fission of uranium or thorium provides access to many neutron-rich isotopes, including e.g. Zn!
- Laser ionization and mass separation is used to only select the isotope of interest, and reduce the amount of unwanted isotopes, molecules,... in the beam
- Laser ionization is an important tool in an RIB lab's toolbox

- Collinear laser spectroscopy
- Charge exchange: cell which is filled with e.g. sodium and heated to produce a vapour
- At beam energies of a few keV, large cross section for:

 $Zn^+ + Na \rightarrow Zn + Na^+$

- Collinear laser spectroscopy
- Charge exchange: cell which is filled with e.g. sodium and heated to produce a vapour
- At beam energies of a few keV, large cross section for:

 $Zn^+ + Na \rightarrow Zn + Na^+$

I = 9/2

²⁸ C. Wraith et al. / Physics Letters B 771 (2017) 385–391

I = 9/2

²⁹ C. Wraith et al. / Physics Letters B 771 (2017) 385–391

I = 9/2

³⁰ C. Wraith et al. / Physics Letters B 771 (2017) 385–391

I = 9/2

7/2 9/2 11/2 J = 1J = 1 F Selection rules: 9 transitions! 5/2 7/2 J = 2J = 29/2 11/2 13/2 F

I = 1/2

How many transitions are there in this case?

³¹ C. Wraith et al. / Physics Letters B 771 (2017) 385–391

I = 9/2

I = 1/2

³² C. Wraith et al. / Physics Letters B 771 (2017) 385–391

I = 9/2

³³ C. Wraith et al. / Physics Letters B 771 (2017) 385–391

- In nearly all isotopes, two long-lived states were found in the spectra
 - Recall: laser spectroscopy is possible down to lifetimes of a few ms
- The plot on the right summarizes the g-factors g = μ/l and the nuclear spins
- Observations?

- In nearly all isotopes, two long-lived states were found in the spectra
 - Recall: laser spectroscopy is possible down to lifetimes of a few ms
- The plot on the right summarizes the g-factors g = μ/l and the nuclear spins
- Observations?

Observations?

Some g-factors positive, some negative

=> relative alignment of I and s

Observations?

- Some g-factors positive, some negative
 => relative alignment of I and s
- Two I=1/2 states have very different g-factor

Observations?

- Some g-factors positive, some negative
 => relative alignment of I and s
- Two I=1/2 states have very different g-factor
- g-factors line up very nicely 69-79Zn

Observations?

- Some g-factors positive, some negative
 => relative alignment of I and s
- Two I=1/2 states have very different g-factor
- g-factors line up very nicely 69-79Zn
- We can now easily suggest some configurations

Observations?

- Some g-factors positive, some negative
 => relative alignment of I and s
- g-factors line up very nicely 69-79Zn
- Two I=1/2 states have very different g-factor
- What configurations would you suggest?

Observations?

- Some g-factors positive, some negative
 => relative alignment of I and s
- g-factors line up very nicely 69-79Zn
- Two I=1/2 states have very different g-factor
- What configurations would you suggest?

Observations?

- Some g-factors positive, some negative
 => relative alignment of I and s
- g-factors line up very nicely 69-79Zn
- Two I=1/2 states have very different g-factor
- What configurations would you suggest?
- Note that g((jⁿ) |) = g(j)
- Thus, suggestion is that e.g. 73m Zn has a $(g_{9/2})^{-3}_{5/2}$ configuration

Observations?

- Two I=1/2 states have very different g-factor
- g-factors line up very nicely 69-79Zn
- What configurations would you suggest?

KU LEUVEN

What did we learn here?

- Magnetic moments are very sensitive to the configuration
 of unpaired nucleons
 - They can be used to identify ordering of single particle levels
 - More in-depth comparisons with nuclear theory can be used to learn more about rigidity of shell closures, role of collective excitations, ...
- BUT! be careful when dealing with strongly deformed systems. In this case the assumptions made to derive the simple Schmidt limit are absolutely not valid.
- Laser spectroscopy is one of the few techniques that can be used to measure magnetic moments close to stability as well as for very exotic isotopes.

Example for zinc

Example for zinc

-

-

Example for zinc

In summary...

- Magnetic moments are very sensitive to the configuration of unpaired nucleons
 - They can be used to identify ordering of single particle levels
 - More in-depth comparisons with nuclear theory can be used to learn more about rigidity of shell closures, role of collective excitations, ...
- Laser spectroscopy techniques provide a convenient way to measure magnetic moments, as well as the other observables discussed by lain
- We studied the Zn isotopic chain as an example, but the lessons generalize to isotopic chains throughout the chart
- In particular: we leverage the richness of atomic structure to optimize our experiments so we can study the most exotic and short-lived isotopes
- It is at this interface of atomic physics, nuclear physics and ever-evolving technology that we perform our work!

Example for zinc ⁶⁵ Zn 10 20 75 ZN ⁶³ Zn ⁶⁴ Zn 69 ZN 71 20 76 ZN ⁶⁶ Zn 72 Zn ⁷³ Zn ⁷⁴ Zn ⁷⁸ Zn 79 Zn 81 ZII 77 Zn β⁺ = 100% Abundance=49.17% β⁺ = 100% Abundance=27.73% Abundance=18.45% B⁻ = 100% Abundanœ=0.61% β⁻=100% β⁻ Abundance=4.04% β⁻=100 β⁻=100% Accepted proposal! 6 5 'Online' measurements 4 Shorter half-lives become 3 possible Laser spectroscopy 2 technique => suddenly a lot of isotopes can be studied in a few days! (1986, 1988] 1990]2014] 2016] 1964, 1966] 1968, 1970] 2004] 2012] 1966, 1968] [1990, 1992] [2008, 2010] [1970, 1972] 1972, 1974 [1974, 1976] 1976, 1978 1978, 1980 [1980, 1982] 1982, 1984 [1984, 1986] [1992, 1994] [1994, 1996] [1996, 1998] [1998, 2000] 2000, 2002] [2004, 2006] 2006, 2008 Lifetimes << 1s (1988, (2002, (2010, (2012, (2014,

-

Collinear resonance ionization spectroscopy

- Use of laser ionization enables measurements with lower backgrounds and higher efficiency
- Since the atoms get ionized, we can send them to a decay station for further spectroscopy
 - !!! We can produce isomerically pure beams!
 - Thus, we can gather complimentary decay data to really help understand e.g. ^{79m}Zn and the isotopes N=50, 51

