

Laser spectroscopy for nuclear structure physics

Ruben de Groote ruben.degroote@kuleuven.be Last lectures,

- We've discussed a little about the general principles of laser spectroscopy techniques
- You've seen examples of the physics we can study with magnetic moments, quadrupole moments and changes in mean-squared charge radii

This lecture,

- examples of the state-of-the-art in experimental techniques
 - In-source laser spectroscopy combined with Penning trap mass spectrometry the at IGISOL laboratory
 - Precision measurements: hyperfine structure beyond the quadrupole

Optical spectroscopy for nuclear structure research

Predominantly collinear fast-beam experiments

- Optical spectroscopy for nuclear structure research
- Pushing to lower production cross sections
 - in-source laser spectroscopy of silver

Predominantly collinear fast-beam experiments

- Optical spectroscopy for nuclear structure research
- Pushing to lower production cross sections
 - in-source laser spectroscopy of silver
- When more precision is needed: collinear fastbeam laser spectroscopy
 - Laser spectroscopy of zinc

Predominantly collinear fast-beam experiments

JYU. Since 1863.

4.10.2021

- Optical spectroscopy for nuclear structure research
- Pushing to lower production cross sections
 - in-source laser spectroscopy of silver
- When more precision is needed: collinear fastbeam laser spectroscopy
 - Laser spectroscopy of zinc
- When even more precision is needed: beyond conventional optical spectroscopy
 - Future directions?

Predominantly collinear fast-beam experiments

JYU. Since 1863.

4.10.2021 6

- ¹⁰⁰Sn and the neighbouring isotopes are important isotopes to study in our quest to understand the atomic nucleus
- Producing these very neutron-poor isotopes is **challenging.**
- Reactions offer only small cross section, and other isotopes with the same mass (but closer to stability) are produced in much larger quantities.

	N=Z		50	Sn 99	Sn 100 1.16 s	Sn 101 1.97 s	Sn 102 3.8 s	Sn 103 7.0 s	Sn 104 20.8 s	Sn 105 34 s
	•	In 96	In 97 50 ms	In 98 37 ms	In 99 3.1 s	In 100 5.83 s	In 101 15.1 s	In 102 23.3 s	In 103 60 s	In 104 1.80 m
	Cd 94	Cd 95 90 ms	Cd 96 880 ms	Cd 97 1.10 s	Cd 98 9.2 s	Cd 99 16 s	Cd 100 49.1 s	Cd 101 1.36 m	Cd 102 5.5 m	Cd 103 7.3 m
Ag 92	Ag 93	Ag 94 37 ms	Ag 95 1.76 s	Ag 96 4.44 s	lg 97 5.5 s	Ag 98 47.5 s	Ag 99 2.07 m	Ag 100 2.01 m	Ag 101 11.1 m	Ag 102 12.9 m
Pd 91	Pd 92 1.1 s	Pd 93 1.15 s	Pd 94 9.0 s	Pd 95 7.5 s	Pd 96 122 s	Pd 97 3.10 m	Pd 98 17.7 m	Pd 99 21.4 m	Pd 100 3.63 d	Pd 101 8.47 h
		-			50	-				
	Projected reach of PI-ICR RIS				Optical measurement					

- I'd like to walk you through a recent experiment to show what it takes to perform measurements at the edges of our production capabilities
- Red: published work to date
- Gray: N=Z line, where nuclei have the same number of protons and neutrons

	N=Z		50	Sn 99	Sn 100 1.16 s	Sn 101 1.97 s	Sn 102 3.8 s	Sn 103 7.0 s	Sn 104 20.8 s	Sn 105 34 s
	•	In 96	In 97 50 ms	In 98 37 ms	In 99 3.1 s	In 100 5.83 s	In 101 15.1 s	In 102 23.3 s	In 103 60 s	In 104 1.80 m
	Cd 94	Cd 95 90 ms	Cd 96 880 ms	Cd 97 1.10 s	Cd 98 9.2 s	Cd 99 16 s	Cd 100 49.1 s	Cd 101 1.36 m	Cd 102 5.5 m	Cd 103 7.3 m
Ag 92	Ag 93	Ag 94 37 ms	Ag 95 1.76 s	Ag 96 4.44 s	1g 97 5.5 s	Ag 98 47.5 s	Ag 99 2.07 m	Ag 100 2.01 m	Ag 101 11.1 m	Ag 102 12.9 m
Pd 91	Pd 92 1.1 s	Pd 93 1.15 s	Pd 94 9.0 s	Pd 95 7.5 s	Pd 96 122 s	Pd 97 3.10 m	Pd 98 17.7 m	Pd 99 21.4 m	Pd 100 3.63 d	Pd 101 8.47 h
		-			50	-				
	Projected reach of PI-ICR RIS				Optic meas	cal ureme	nt			

- I'd like to walk you through a recent experiment to show what it takes to perform measurements at the edges of our production capabilities
- Red: measured isotopes, some not yet published (look at how me have achieved over the past years!)
- Gray: N=Z line, where nuclei have the same number of protons and neutrons

	N=Z		50	Sn 99	Sn 100 1.16 s	Sn 101 1.97 s	Sn 102 3.8 s	Sn 103 7.0 s	Sn 104 20.8 s	Sn 105 34 s
	_	In 96	In 97 50 ms	In 98 37 ms	In 99 3.1 s	In 100 5.83 s	In 101 15.1 s	In 102 23.3 s	In 103 60 s	In 104 1.80 m
	Cd 94	Cd 95 90 ms	Cd 96 880 ms	Cd 97 1.10 s	Cd 98 9.2 s	Cd 99 16 s	Cd 100 49.1 s	Cd 101 1.36 m	Cd 102 5.5 m	Cd 103 7.3 m
Ag 92	Ag 93	Ag 94 37 ms	Ag 95 1.76 s	Ag 96 4.44 s	Ag 97 25.5 s	Ag 98 47.5 s	Ag 99 2.07 m	Ag 100 2.01 m	Ag 101 11.1 m	Ag 102 12.9 m
Pd 91	Pd 92 1.1 s	Pd 93 1.15 s	Pd 94 9.0 s	Pd 95 7.5 s	Pd 96 122 s	Pd 97 3.10 m	Pd 98 17.7 m	Pd 99 21.4 m	Pd 100 3.63 d	Pd 101 8.47 h
50										
Projected reach of					Ontic	ral				

measurement

- Why does silver push out so much further than the other isotopes?
- At the heart of the answer: the atomic properties of silver.

	N=Z		50	Sn 99	Sn 100 1.16 s	Sn 101 1.97 s	Sn 102 3.8 s	Sn 103 7.0 s	Sn 104 20.8 s	Sn 105 34 s
	•	In 96	In 97 50 ms	In 98 37 ms	In 99 3.1 s	In 100 5.83 s	In 101 15.1 s	In 102 23.3 s	In 103 60 s	In 104 1.80 m
	Cd 94	Cd 95 90 ms	Cd 96 880 ms	Cd 97 1.10 s	Cd 98 9.2 s	Cd 99 16 s	Cd 100 49.1 s	Cd 101 1.36 m	Cd 102 5.5 m	Cd 103 7.3 m
Ag 92	Ag 93	Ag 94 37 ms	Ag 95 1.76 s	Ag 96 4.44 s	Ag 97 25.5 s	Ag 98 47.5 s	Ag 99 2.07 m	Ag 100 2.01 m	Ag 101 11.1 m	Ag 102 12.9 m
Pd 91	Pd 92 1.1 s	Pd 93 1.15 s	Pd 94 9.0 s	Pd 95 7.5 s	Pd 96 122 s	Pd 97 3.10 m	Pd 98 17.7 m	Pd 99 21.4 m	Pd 100 3.63 d	Pd 101 8.47 h
	50									
	Projected reach of PI-ICR RIS				Optical measurement					

- Why does silver push out so much further than the other isotopes?
- At the heart of the answer: the atomic properties of silver.

M. Reponen, R. P. de Groote et al, Nature Communications 12 (1), 1-8

KU LEUVEN

KU LEUVEN

- Why does silver push out so much further than the other isotopes?
- At the heart of the answer: the atomic properties of silver
- Silver also doesn't stick very much inside of a thick target, which means the decay losses during extraction are minimal

	N=Z		50	Sn 99	Sn 100 1.16 s	Sn 101 1.97 s	Sn 102 3.8 s	Sn 103 7.0 s	Sn 104 20.8 s	Sn 105 34 s
	-	In 96	In 97 50 ms	In 98 37 ms	In 99 3.1 s	In 100 5.83 s	In 101 15.1 s	In 102 23.3 s	In 103 60 s	In 104 1.80 m
	Cd 94	Cd 95 90 ms	Cd 96 880 ms	Cd 97 1.10 s	Cd 98 9.2 s	Cd 99 16 s	Cd 100 49.1 s	Cd 101 1.36 m	Cd 102 5.5 m	Cd 103 7.3 m
Ag 92	Ag 93	Ag 94 37 ms	Ag 95 1.76 s	Ag 96 4.44 s	Ag 97 25.5 s	Ag 98 47.5 s	Ag 99 2.07 m	Ag 100 2.01 m	Ag 101 11.1 m	Ag 102 12.9 m
Pd 91	Pd 92 1.1 s	Pd 93 1.15 s	Pd 94 9.0 s	Pd 95 7.5 s	Pd 96 122 s	Pd 97 3.10 m	Pd 98 17.7 m	Pd 99 21.4 m	Pd 100 3.63 d	Pd 101 8.47 h
	50									
	Projected reach of PLICE RIS				Optical measurement					

- 1. Production
- ¹⁴N(⁹²Mo, 2p xn) Ag
- Ag ions stopped in graphite catcher foil
- Diffuse into hot cavity (few ms)

M. Reponen, R. P. de Groote et al, Nature Communications 12 (1), 1-8

M. Reponen, R. P. de Groote et al, Nature Communications 12 (1), 1-8

- 1. Production
- 2. Spectroscopy
- Laser ionization spectroscopy
- Possible to measure dipole moments and radii because the S_{1/2} ground-state of silver possesses a very large A/µ-ratio

- 1. Production
- 2. Laser ionization spectroscopy

- 3. Detection and removal of contaminants
- Ions are injected into Penning trap
- Excitations of the ion motion in the trap
 - Kick out isobars
 - States in silver land on different areas of 2D-MCP detector

- 1. Production
- 2. Laser ionization spectroscopy
- 3. Detection
 - Count ions as function of laser frequency
 - Different gates on detector area select different nuclear state

Result:

Ultra clean background conditions

⁹⁶Ag studied with an "on resonance" detection rate of **1 ion per 5 mins**

Demonstrated for ⁹⁵Ag, too!

- 1. Production
- 2. Laser ionization spectroscopy
- 3. Detection
 - Count ions as function of laser frequency
 - Different gates on detector area select different nuclear state

Result:

Ultra clean background conditions

⁹⁶Ag studied with an "on resonance" detection rate of **1 ion per 5 mins**

Demonstrated for ⁹⁵Ag, too!

- Closest crossing of N=50 in this region to date
 - 2nd closest: Mo (*Z*=42)
- Event rate at the end of Penning trap: 0.005 events/s
- Background rate: ... 0?
- Remarkably sharp increase in radius observed
 - Comparison to state-of-the-art nuclear Fayans DFT is ongoing – but seems hard to explain with current theoretical tools

- Optical spectroscopy for nuclear structure research
- Pushing to lower production cross sections
 - in-source laser spectroscopy of silver
- When more precision is needed: collinear fastbeam laser spectroscopy
 - Laser spectroscopy of zinc
- When even more precision is needed: beyond conventional optical spectroscopy
 - Future directions?

Predominantly collinear fast-beam experiments

Eye-watering higher orders.....

I.D. Moore, EJC 2021

PHYSICAL REVIEW A 103, 032826 (2021)

Magnetic octupole moment of ¹⁷³Yb using collinear laser spectroscopy

R. P. de Groote⁽⁰⁾,^{1,*} S. Kujanpää⁽⁰⁾,¹ Á. Koszorús⁽⁰⁾,² J. G. Li⁽⁰⁾,³ and I. D. Moore⁽⁰⁾
¹Department of Physics, University of Jyväskylä, PB 35(YFL) FIN-40351 Jyväskylä, Finland
²Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom
³Institute of Applied Physics and Computational Mathematics, Beijing 100088, China

Defining K = F(F+1) - I(I+1) - J(J+1), this can be written as (truncated at the octupole (k = 3) term): $E_F^{(1)} = \frac{AK}{2} + \frac{3B}{4} \frac{K(K+1) - I(I+1)J(J+1)}{(2I(2I-1)J(2J-1))} + \frac{5C}{4} \frac{K^3 + 4K^2 + \frac{4}{5}K(-3I(I+1)J(J+1) + I(I+1) + J(J+1) + 3) - 4I(I+1)J(J+1)}{I(I-1)(2I-1)J(J-1)(2J-1))},$

with hyperfine constants

$$A = \frac{1}{IJ} \langle II|T_2^{(n)}|II\rangle \langle JJ|T_1^{(e)}|JJ\rangle = \frac{\mu_I}{IJ} \langle JJ|T_1^{(e)}|JJ\rangle,$$

$$B = 4 \langle II|T_2^{(n)}|II\rangle \langle JJ|T_2^{(e)}|JJ\rangle = 2eQ\langle JJ|T_2^{(e)}|JJ\rangle,$$

$$C = \langle II|T_3^{(n)}|II\rangle \langle JJ|T_3^{(e)}|JJ\rangle = -\Omega \langle JJ|T_3^{(e)}|JJ\rangle.$$

$$H_{hyf} = \sum_{k} \mathbf{M}_{n}^{(k)} . \mathbf{T}_{e}^{(k)}$$

Extracting a nuclear moment requires knowledge of the atomic structure of the state in question!

Magnetic dipole

Magnetic octupole

Infinite expansion... Each term is significantly smaller than the previous one.

$$H_{hyf} = \sum_{k} \mathbf{M}_{n}^{(k)} \cdot \mathbf{T}_{e}^{(k)}$$
$$E_{F}^{(1)} = \sum_{k} (-1)^{I+J+F} \begin{cases} J & I & F \\ I & J & k \end{cases}$$
$$\times \langle I || M_{n}^{(k)} || I \rangle \langle J || T_{e}^{(k)} || J \rangle.$$

Magnetic dipole

Magnetic octupole

$$H_{hyf} = \sum_{k} \mathbf{M}_{n}^{(k)} \cdot \mathbf{T}_{e}^{(k)}$$

$$E_{F}^{(1)} = \sum_{k} (-1)^{I+J+F} \begin{cases} J & I & F \\ I & J & k \end{cases}$$

$$\times \langle I || M_{n}^{(k)} || I \rangle \langle J || T_{e}^{(k)} || J \rangle.$$

$$E_{F}^{(1)} = \sum_{k} (-1)^{I+J+F} \frac{X_{i} \begin{cases} J & I & F \\ I & J & k \end{cases}}{\begin{pmatrix} I & I & F \\ I & J & k \end{pmatrix}}$$

Nuclear x atomic

...

$$A = \frac{\mu}{IJ} \times H(0)$$
$$B = 2eQ \times V_{zz}$$
$$C = -\Omega \times [?]$$
$$D = \Pi \times [??]$$

Ask your friendly neighbourhood atomic theorist what these are

$$H_{hyf} = \sum_{k} \mathbf{M}_{n}^{(k)} \cdot \mathbf{T}_{e}^{(k)}$$

$$E_{F}^{(1)} = \sum_{k} (-1)^{I+J+F} \begin{cases} J & I & F \\ I & J & k \end{cases}$$

$$\times \langle I || M_{n}^{(k)} || I \rangle \langle J || T_{e}^{(k)} || J \rangle.$$

$$E_{F}^{(1)} = \sum_{k} (-1)^{I+J+F} \frac{X_{i} \begin{cases} J & I & F \\ I & J & k \end{cases}}{\begin{pmatrix} I & I & I \\ -I & 0 & I \end{pmatrix} \begin{pmatrix} J & I & J \\ -J & 0 & J \end{pmatrix}}$$

Unfortunate conventions...

Ask your friendly neighbourhood atomic theorist what these are

$$H_{hyf} = \sum_{\iota} \mathbf{M}_{n}^{(k)} \cdot \mathbf{T}_{e}^{(k)}$$
$$E_{F}^{(1)} = \sum_{k} (-1)^{I+J+F} \begin{cases} J & I & F \\ I & J & k \end{cases}$$
$$\times \langle I || M_{n}^{(k)} || I \rangle \langle J || T_{e}^{(k)} || J \rangle.$$

$$E_F^{(1)} = \sum_k (-1)^{I+J+F} \frac{X_i \begin{cases} J & I & F \\ I & J & k \end{cases}}{\begin{pmatrix} I & 1 & I \\ -I & 0 & I \end{pmatrix} \begin{pmatrix} J & 1 & J \\ -J & 0 & J \end{pmatrix}}$$

$$\begin{split} H_{hyf} &= \sum_{\iota} \mathbf{M}_{n}^{(k)} \cdot \mathbf{T}_{e}^{(k)} \\ E_{F}^{(1)} &= \sum_{k} (-1)^{I+J+F} \begin{cases} J & I & F \\ I & J & k \end{cases} \\ &\times \langle I || M_{n}^{(k)} || I \rangle \langle J || T_{e}^{(k)} || J \rangle . \\ E_{F}^{(2)} &= \sum_{J'} \frac{1}{E_{J} - E_{J'}} \sum_{k_{1}, k_{2}} \begin{cases} F & J & I \\ k_{1} & I & J' \end{cases} \begin{cases} F & J & I \\ k_{2} & I & J' \\ k_{2} & I & J' \end{cases} \\ &\times \langle I || M_{n}^{(k_{1})} || I \rangle \langle I || M_{n}^{(k_{2})} || I \rangle \\ &\times \langle J' || T_{e}^{(k_{1})} || J \rangle \langle J' || T_{e}^{(k_{2})} || J \rangle , \end{split}$$

States with same F of different atomic levels mix

$$\begin{split} H_{hyf} &= \sum_{\iota} \mathbf{M}_{n}^{(k)} \cdot \mathbf{T}_{e}^{(k)} \\ E_{F}^{(1)} &= \sum_{k} (-1)^{I+J+F} \begin{cases} J & I & F \\ I & J & k \end{cases} \\ &\times \langle I || M_{n}^{(k)} || I \rangle \langle J || T_{e}^{(k)} || J \rangle . \\ E_{F}^{(2)} &= \sum_{J'} \frac{1}{E_{J} - E_{J'}} \sum_{k_{1},k_{2}} \begin{cases} F & J & I \\ k_{1} & I & J' \end{cases} \begin{cases} F & J & I \\ k_{2} & I & J \end{cases} \\ &\times \langle I || M_{n}^{(k_{1})} || I \rangle \langle I || M_{n}^{(k_{2})} || I \rangle \\ &\times \langle J' || T_{e}^{(k_{1})} || J \rangle \langle J' || T_{e}^{(k_{2})} || J \rangle , \end{split}$$

These expressions may still look a little terrifying, but the stuff related to the angular momenta is actually the easy part.

The hard part lies in evaluating the atomic matrix elements!

What is currently holding our experimental resolution/precision back?

+ **Fast** (can be performed on short-lived isotopes ~ ms)

+ Sensitive (~ few ions/s)

+ Able to reach natural linewidth of strong transitions

Strong transition

-> Short half-life O(ns) -> Broad linewidth

Think back to the lecture on penning traps: short measurement time means low precision. It's really just fourier transforms.

What is currently holding our experimental resolution/precision back?

+ **Fast** (can be performed on short-lived isotopes ~ ms)

+ Sensitive (~ few ions/s)

+ Able to reach natural linewidth of strong transitions

-> Short half-life O(ns) -> Broad linewidth

Think back to the lecture on penning traps: short measurement time means low precision. It's really just fourier transforms.

- In order to perform measurements with long interaction times, we need to store atoms or ions into a trap
- After previous lectures, you are all experts in how these work!
- Once in the trap, the ions can be carefully prepared
- Typically Paul traps, but penning traps are also possible.

36

Precision measure

- In order to perform measureme interaction times, we need to st ions into a trap
- After previous lectures, you are how these work!
- Once in the trap, the ions can be carefully prepared
- Typically Paul traps, but penning traps are also possible.

- Barium has a simple atomic structure
- By using only two lasers, we can cool the ion down
 - Laser tuned slightly below resonance
 - photon is absorbed when the atom is moving towards the laser
 - Emission is isotropic: net effect means the ion slows down
 - Many cycles: reach temperatures of the order of Kelvin
 - Ask Franziska!

- Barium has a simple atomic structure
- By using only two lasers, we can cool the ion down
- Once the ion has been cooled, precise spectroscopy is possible
 - Radiofrequency excitations can be used to precisely measure splittings of the D states
 - Think of penning traps: long interaction, narrow resonance!

- The atom now sits very still, and can be gently examined with a laser beam
- Scanning over the optical transition...

⁴⁰ Optics Express Vol. 20, Issue 19, pp. 21379-21384 (2012)

KU LEUVEN

Table 6.2: $5D_{5/2}$ hyperfine coupling constants.

- Combining the data with precise calculations by B. Sahoo
 - Relativistic coupled cluster (CCSD(T) method)

	A (Hz)	B(Hz)	C(Hz)
Uncorr.	-12029724.1(9)	59519566.2(43)	-41.73(18)
η corr.	537(11)	5367(110)	_
ζ corr.	-46.9(12)	587(15)	29.33(75)
Corr.	-12029234(11)	59525520(110)	-12.41(77)

- Consistent value obtained from the two metastable D-states
- Nuclear theory interpretation of the result is yet to be made...

$$\Omega\left({}^{137}\mathrm{Ba}^{+}_{\mathrm{D}_{3/2}}\right) = 0.05057(54)~(\mu_{\mathrm{N}} \times \mathrm{b}),$$

$$\Omega\left({}^{137}\mathrm{Ba}^{+}_{\mathrm{D}_{5/2}}\right) = 0.0496(37)~(\mu_{\mathrm{N}}\times\mathrm{b}),$$

The fun doe	esn't even stop the	re		$\widehat{N} = \sum_{i=1}^{151} E u^{+} : {}^{9}S_{4} = M_{1}$
 External B-fasting! Direct us assign 	field: measure zee Inambiguous spin nent	man		H F=11/2 $\Delta m_r=0$ 11/2 $\Delta m_r=0$ 11/2 $\Delta m_r=0$ 11/2 -1/2 -1/2
hfs constant	¹⁵¹ Eu ⁺ (Hz)	¹⁵³ Eu ⁺ (Hz)	¹⁵¹ Eu ⁺ : ¹⁵³ Eu ⁺	
A B C D	$ \begin{array}{r} 1 540 297 394(13) \\ - 660 862(231) \\ $	$ \begin{array}{r} 684565993(9) \\ -1752868(84) \\ \hline 3(7) \\ -5(2) \end{array} $	2.250 034 927(35) 0.377 02(13) 9(22) 1.2(1.1)	0 100 200 300 400 500 rf Frequency + 10 017 200 (kHz)

Fit No.

VI

KU LEUVEN

Outline/conclusion

- Optical spectroscopy for nuclear structure research
- Pushing to lower production cross sections
 - in-source laser spectroscopy of silver
- When more precision is needed: collinear fastbeam laser spectroscopy
 - Laser spectroscopy of zinc
- When even more precision is needed: beyond conventional optical spectroscopy
 - Future directions?
- Missing third axis: elements which are difficult to extract, and/or have complex atomic structure

Predominantly collinear fast-beam experiments

4KU LEUVEN

- Inject nuclei into an atom or ion trap
- Then, very long interaction times (seconds or more!) are possible
 - Drive forbidden optical transitions (linewidths << kHz)
 - Directly excite electrons within one atomic level (J, F, mF) → (J, F^(·), m_F^(·))

Measurement principle:

 Laser tuned to one transition will deplete an (F, m_F) state after many cycles

- Laser tuned to one transition will deplete an (F, m_F) state after many cycles
- Thus, fluorescence count rate will drop

- Laser tuned to one transition will deplete an (F, m_F) state after many cycles
- Thus, fluorescence count rate will drop
- Radiofrequency field

- Laser tuned to one transition will deplete an (F, m_F) state after many cycles
- Thus, fluorescence count rate will drop
- Radiofrequency field brings some electrons back!

- Laser tuned to one transition will deplete an (F, m_F) state after many cycles
- Thus, fluorescence count rate will drop
- Radiofrequency field brings some electrons back!
- Fluorescence increases

Add external B-field: resolve Zeeman splitting Count the peaks, determine nuclear spin...

• Is it all worth the effort?

Fit No.	hfs constant	¹⁵¹ Eu ⁺ (Hz)	¹⁵³ Eu ⁺ (Hz)	¹⁵¹ Eu ⁺ : ¹⁵³ Eu ⁺
VI	A	1 540 297 394(13)	684 565 993(9)	2.250 034 927(35)
	B	-660862(231)	-1752868(84)	0.377 02(13)
	С	26(23)	3(7)	9(22)
	D	-6(5)	-5(2)	1.2(1.1)

