Physics and chemistry of the heaviest elements

S. Raeder

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany

Heavy Elements - The far end of the periodic table

́Н										6	A						² He
³ Li	⁴Be		Linited National Year													Ne	
Na	Mg						Edu	cational, Scien Cultural Orga	ntific and • anization •	of the Period of Chemical	Elements	¹³ AI	¹⁴ Si	¹⁵ P	¹⁶ S		Ar
¹⁹ K	Ca	Sc	Ti	²³ V	²⁴ Cr	²⁵ Mn	Fe	²⁷ Co	²⁸ Ni	Cu	Zn	Ga	Ge	As	Se	Br	³⁶ Kr
³⁷ Rb	³⁸ Sr	³⁹ Y	⁴⁰ Zr	Nb	Mo	Tc	^{₄₄} Ru	^{₄₅}	Pd	Ag	⁴⁸ Cd	In	⁵⁰Sn	Sb	Te	⁵³ I	Xe
⁵⁵ Cs	Ba		Hf	Та	⁷⁴ W	Re	OS	⁷⁷ Ir	Pt	⁷⁹ Au	во Hg	⁸¹ TI	Pb	Bi	Ро	At	⁸⁶ Rn
⁸⁷ Fr	Ra		¹⁰⁴ Rf 1964	105 Db 1967	¹⁰⁶ Sg 1974	¹⁰⁷ Bh 1981	108 Hs 1982	109 Mt 1984	110 Ds 1994	¹¹¹ Rg 1994	¹¹² Cn 1996	¹¹³ Nh 2003	¹¹⁴ Fl 1999	¹¹⁵ Mc 2003	¹¹⁶ Lv 2000	¹¹⁷ Ts 2009	Og 2002

Electron shell

atomic structure chemical properties → defines the element

Super Heavy Elements

⁵⁷ La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	⁶⁵ Tb	⁶⁶ Dy	Ho	Er	⁶⁹ Tm	Yb	Lu
Ac	⁰Th	⁹¹ Pa	⁹² U	⁹³ Np	P4 Pu	⁹⁵ Am	[‰] Cm	⁹⁷ Bk	°°Cf	⁹⁹ Es	Fm	¹⁰¹ Md 1955	NO 1958	¹⁰³ Lr 1961

Helmholtz-Institut Mainz GRAND CHALLENGES

RESEARCH FOR

HIM

Droplet Model (DM):

 $Z \ge 104$ spontaneous fission is faster then formation of the atom shell

S. Raeder - 07.10.2021 - Lecture 1 - Joliot-Curie School - Isle d'Oleron

Electron shell

atomic structure chemical properties \rightarrow defines the element

nuclear structure stability of elements

HIM

HELMHOLTZ

Additional stabilzation from nuclear shell effects

 \rightarrow Area of enhanced stabilty around N~180

nuclei without magic gaps. Phys. Lett. B 515, 42–48 (2001) Herzberg, Rolf-Dietmar. "Nuclear structure of superheavy elements."

The chemistry of superheavy elements. Springer, Berlin, Heidelberg, 2014. 83-133.

S. Raeder – 07.10.2021 – Lecture 1 - Joliot-Curie School – Isle d'Oleron

Electron shell

atomic structure chemical properties → defines the element

Nucleus

nuclear structure stability of elements

"Pa U "Np Pu Am Cm Bk Cf Es Fm

RCH FOR

GRAND CHALLENGES

HELMHOLTZ

Helmholtz-Institut Mainz

JGI

UNIVERSITÄT MAINZ

JOHANNES GUTENBERG

Electron shell

atomic structure

Additional stabilzation from nuclear shell effects

 \rightarrow deformation of ground state

Additional stabilization from nuclear shell effects

 \rightarrow deformation of ground state

The chemistry of superheavy elements. Springer, Berlin, Heidelberg, 2014. 83-133.

S. Raeder - 07.10.2021 - Lecture 1 - Joliot-Curie School - Isle d'Oleron

Electron shell

atomic structure chemical properties \rightarrow defines the element

nuclear structure stability of elements

HELMHOLTZ

Heaviest Elements

Elements at the limits of nuclear stability

- Why do SHE exist at all ? ------> Shell effects
- How are they best produced in the lab?
- What is nuclear structure: binding energies, excitations, shape and sizes
- How do their atomic and chemical properties compare to known (lighter) elements ?

GRAND CHALLENGES

UNIVERSITÄT MAINZ

Helmholtz-Institut Mainz

How to access the heaviest elements?

Heavy Elements - The far end of the periodic table

Influence of Relativity on Atomic and Chemical Properties

S. Raeder - 07.10.2021 - Lecture 1 - Joliot-Curie School - Isle d'Oleron

GRAND CHALLENGES JOHANNES GUTENBERG

nholtz-Institut Mainz

Chemistry with limited number of atoms

Gas phase chromotography

Chromatography column

Strength of interaction is expressed by adsorption enthalpie ΔH_{ads} of A on B

R: Gas constant; T: column temperature; τ_0 =characteristic time of oscillation of the column material; e.g., SiO₂: 2.2·10⁻¹³ s

JGU

JOHANNES GUTENBERG

UNIVERSITÄT

GRAND CHALLENGES

HOLTZ

nholtz-Institut Mainz

Gas phase chromotography

Experimental setup for Cn (Z=112) chemistry (PSI,FLNR)

Helmholtz-Institut Mainz GRAND CHALLENGES

Volatility of Cn (Z=112)

GRAND CHALLENGES

UNIVERSITÄT MAINZ

Helmholtz-Institut Mainz

FI (Z=114) chemistry experiments

R. Eichler et al Angew. Chem. 120 (2008) 3306

Trans**A**ctinide **S**eparator and **C**hemistry **A**pparatus – **TASCA**

Trans**A**ctinide **S**eparator and **C**hemistry **A**pparatus – **TASCA**

JGU

FI (Z=114) decay chains from chemistry experiments

JGU

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

HIM

RESEARCH FOR

Helmholtz-Institut Mainz GRAND CHALLENGES

Beyond Mc: Preparations for chemistry with ¹¹⁶Lv and ¹¹⁷Ts

High-pressure UniCell project for faster extraction and higher efficiency

Chemistry is possible

with single atoms

Literature:

Schädel, Matthias, and Dawn Shaughnessy, eds.

The chemistry of superheavy elements. Springer Science & Business Media, 2013.

HIM JG U HELMHOLTZ Helmholtz-Institut Mainz