Introduction	Isotope shifts	HFS 0000000	Nuclear Polarization	Conclusions O

Electron-nucleus interactions and nuclear effects in atomic transitions

Adriana Pálffy

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

EJC Oleron, October 2021

NATURWISSENSCHAFTLICHE FAKULTÄT

Introduction ●0000000	Isotope shifts	HFS 0000000	Nuclear Polarization	Conclusions O
"Nuclear"	effects			

Introduction 0000000	Isotope shifts	HFS 0000000	Nuclear Polarization	Conclusions O
"Nuclear"	effects			

Introduction 0000000	Isotope shifts	HFS 0000000	Nuclear Polarization	Conclusions O
"Nuclear"	effects			

Introduction 0000000	Isotope shifts	HFS 0000000	Nuclear Polarization	Conclusions O
"Nuclear"	effects			

Introduction 0000000	Isotope shifts	HFS 0000000	Nuclear Polarization	Conclusions O
"Nuclear"	effects			

Introduction 0000000	Isotope shifts	HFS 0000000	Nuclear Polarization	Conclusions O
"Nuclear"	effects			

Introduction 0000000	Isotope shifts	HFS 0000000	Nuclear Polarization	Conclusions O
"Nuclear"	effects			

Introduction 0000000	Isotope shifts	HFS 0000000	Nuclear Polarization	Conclusions O
"Nuclear	' effects			

Introduction 00000000	Isotope shifts	HFS 0000000	Nuclear Polarization	Conclusions O
"Nuclear	' effects			

- small corrections to atomic level and transition energies
- best studied by comparing two different isotopes
 → measuring isotope shifts

Introduction	Isotope shifts	HFS	Nuclear Polarization	Conclusions
0000000				

Bridging atomic and nuclear physics

- exploring nuclear properties via atomic physics experiments
- nuclear processes directly involving atomic electrons

AP, Contemporary Physics 51, 471 (2010)

The borderline between atomic and nuclear physics

Introduction	Isotope shifts	HFS	Nuclear Polarization	Conclusions
0000000				

Bridging atomic and nuclear physics

- exploring nuclear properties via atomic physics experiments TODAY
- nuclear processes directly involving atomic electrons TOMORROW

AP, Contemporary Physics 51, 471 (2010)

The borderline between atomic and nuclear physics

nuclear transitions involving electrons

Introduction 00000000	Isotope shifts	HFS 0000000	Nuclear Polarization	Conclusions O
Outline				

Isotope shifts

Introduction	Isotope shifts	HFS	Nuclear Polarization	Conclusions
	•0000000000000			

Isotope shifts

Introduction 00000000	Isotope shifts	HFS 0000000	Nuclear Polarization	Conclusions O
Isotope	shifts			

... frequency difference in an electronic transition between two isotopes

$$\Delta \nu_{IS} = \Delta \nu_{FS} + \Delta \nu_{MS}$$

Fermi two-parameter charge distribution

$$\rho_{\textit{nuc}} = \frac{\rho_0}{1 + e^{(r-c)/a}}$$

- $\Delta \nu \sim Z^{5..6}$ • heavy nuclei $\Delta \nu / \nu = 10^{-5}$
- light nuclei $\Delta \nu / \nu = 10^{-8}$

numerical integration of the Dirac equation with V_{nuc}

Introduction	Isotope shifts	HFS	Nuclear Polarization	Conclusions
00000000	○○○●○○○○○○○○○○○	0000000		O
Maee ch	ift			

Relativistic nuclear recoil operator

$$\mathbf{R}_{ij} = \frac{\vec{p}_i \cdot \vec{p}_j}{2M} - \frac{Z\alpha}{2Mr_i} \left(\vec{\alpha}_i + \frac{(\vec{\alpha}_i \cdot \vec{r}_i)\vec{r}_i}{r_i^2}\right) \cdot \vec{p}_j$$

- normal mass shift correction $\langle \sum_i R_{ii} \rangle$
- specific mass shift term $\langle \sum_{i \neq j} R_{ij} \rangle$

in muonic atoms QED theory B. Fricke, PRL 30, 119 (1973)
V. M. Shabaev, Theor. Mat. Fiz. 63, 394 (1985)
Yad. Fiz. 47, 107 (1988)

Introduction	Isotope shifts	HFS	Nuclear Polarization	Conclusions
00000000	0000●000000000	0000000		O

How to measure isotope shifts?

Talks by Ruben and Iain!

- muonic atoms
- electron scattering
- x-ray spectroscopy
- laser spectroscopy
- dielectronic recombination

Introduction 00000000	Isotope shifts	HFS 0000000	Nuclear Polarization	Conclusions O

Highly charged ions

... storage ring ...

or EBIT

Introduction	Isotope shifts ○○○○○○●○○○○○○○	HFS 0000000	Nuclear Polarization	Conclusions O

Isotopic shifts in x-ray transitions

Figure 3. Spectra of the $2p_{3/2} \rightarrow 2s_{1/2}$ transitions in the highly charged ²³³U, ²³³U, and ²³⁸U isotopes. Individual lines are labeled by the charge state of the emitting ions: $C = U^{8i+}$, $B = U^{87+}$, $Be = U^{88+}$ and $Li = U^{80+}$.

$$\delta \langle r^2 \rangle^{233,238} = -0.457 \pm 0.043 \, \text{fm}^2$$

Elliot, Beiersdorfer, Chen, PRL 76, 1031 (1996)

Relativistic recoil and isotopic shifts in ${}^{40}Ar/{}^{36}Ar$

$$\begin{array}{ll} Ar^{13+} & 1s^2 2s^2 2p\,^2 P_{1/2}\, -^2\, P_{3/2} \\ Ar^{14+} & 1s^2 2s 2p\,^3 P_1\, -^3\, P_2 \end{array}$$

FIG. 1 (color online). A typical spectral line obtained from the $1s^22s^22p\ ^2P_{1/2}\ ^2P_{3/2}$ transition in B-like 40 Ar¹³⁺. The six dashed curves represent a fit to the Zeeman components.

sub-ppm accuracy: Soria Orts et al. PRL 97, 103002 (2006)

Introduction	Isotope shifts	HFS 0000000	Nuclear Polarization	Conclusions O

Isotopic shifts ⁴⁰Ar/³⁶Ar

This experiment confirms the newest treatment of relativistic recoil effect

Ion	Theory 1	N _{Observed}	Isotopic shift	rs (⁴⁰ Ar/ ³⁶ Ar)
	(nm, air)*	(nm)	theory (nm)	experiment (nm)
Ar ¹³⁺	441.16(27)	441.2556(1)	0.00123(5)	0.00123(6)
Ar ¹⁴⁺	594.24(30)	594.3879(2)	0.00122(5)	0.00120(10)

Normal and specific mass shifts and their relativistic corrections are of similar sizes.

This relativistic few-body quantum problem can only be solved consistently within a full QED treatment.

courtesy J. Crespo

Soria Orts et al. PRL 97, 103002 (2006)

Introduction	Isotope shifts	HFS	Nuclear Polarization	Conclusions
	000000000000000			

Isotope shifts and nuclear halos

courtesy K. Blaum

Introduction	Isotope shifts	HFS	Nuclear Polarization	Conclusions
	00000000000000			

Isotope shifts and nuclear halos

Isotope shifts and nuclear halos

Introduction	Isotope shifts	HFS	Nuclear Polarization	Conclusions
	000000000000000000000000000000000000000			

\mathbf{RR}

- direct process
- any electron energy
- electron-radiation field

Introduction	Isotope shifts	HFS	Nuclear Polarization	Conclusions
	000000000000000000000000000000000000000			

- direct process
- any electron energy
- electron-radiation field

Introduction	Isotope shifts	HFS	Nuclear Polarization	Conclusions
	000000000000000000000000000000000000000			

- direct process
- any electron energy
- electron-radiation field

Introduction	Isotope shifts	HFS	Nuclear Polarization	Conclusions
	000000000000000000000000000000000000000			

- direct process
- any electron energy
- electron-radiation field

Introduction	Isotope shifts	HFS	Nuclear Polarization	Conclusions
	000000000000000000000000000000000000000			

- direct process
- any electron energy
- electron-radiation field

Introduction	Isotope shifts	HFS	Nuclear Polarization	Conclusions O

- direct process
- any electron energy
- electron-radiation field

Introduction	Isotope shifts	HFS	Nuclear Polarization	Conclusions
	000000000000000000000000000000000000000			

- direct process
- any electron energy
- electron-radiation field

Introduction	Isotope shifts ○○○○○○○○○○○●○	HFS 0000000	Nuclear Polarization	Conclusions O

- direct process
- any electron energy
- electron-radiation field

- resonant process
- Coulomb interaction
- Breit interaction

Introduction	Isotope shifts ○○○○○○○○○○○●○	HFS 0000000	Nuclear Polarization	Conclusions O

- direct process
- any electron energy
- electron-radiation field

- resonant process
- Coulomb interaction
- Breit interaction

Introduction	Isotope shifts ○○○○○○○○○○○●○	HFS 0000000	Nuclear Polarization	Conclusions O

- direct process
- any electron energy
- electron-radiation field

- resonant process
- Coulomb interaction
- Breit interaction

Introduction	Isotope shifts ○○○○○○○○○○○●○	HFS 0000000	Nuclear Polarization	Conclusions O

RR

- direct process
- any electron energy
- electron-radiation field

- resonant process
- Coulomb interaction
- Breit interaction

Introduction	Isotope shifts ○○○○○○○○○○○●○	HFS 0000000	Nuclear Polarization	Conclusions O

- direct process
- any electron energy
- electron-radiation field

- resonant process
- Coulomb interaction
- Breit interaction

Introduction	Isotope shifts ○○○○○○○○○○○●○	HFS 0000000	Nuclear Polarization	Conclusions O

RR

- direct process
- any electron energy
- electron-radiation field

- resonant process
- Coulomb interaction
- Breit interaction

Introduction	Isotope shifts ○○○○○○○○○○○●○	HFS 0000000	Nuclear Polarization	Conclusions O

RR

- direct process
- any electron energy
- electron-radiation field

- resonant process
- Coulomb interaction
- Breit interaction

Introduction	Isotope shifts ○○○○○○○○○○○●○	HFS 0000000	Nuclear Polarization	Conclusions O

RR

- direct process
- any electron energy
- electron-radiation field

- resonant process
- Coulomb interaction
- Breit interaction

Introduction	Isotope shifts	HFS	Nuclear Polarization	Conclusions
00000000	○○○○○○○○○○○○○	0000000		O

Isotope shifts in DR

C. Brandau, C. Kozhuharov, Z. Harman et al., PRL 100, 073201 (2008)

Introduction	Isotope shifts	HFS	Nuclear Polarization	Conclusions
00000000	○○○○○○○○○○○○○	0000000		O

Isotope shifts in DR

C. Brandau, C. Kozhuharov, Z. Harman *et al.*, PRL **100**, 073201 (2008) nuclear deformation: Kozhedub *et al.*, PRA **77**, 032501 (2008)

Introduction	Isotope shifts	HFS	Nuclear Polarization	Conclusions
		000000		

HFS

- -

Introduction 00000000	Isotope shifts	HFS 00●0000	Nuclear Polarization	Conclusions O
HFS				

Splittings or shifts of fine structure levels due to the interaction of nuclear multipole moments with the electromagnetic field created by the electrons at the nucleus

magnetic dipole moment associated to spin

$$\vec{F} = \vec{I} + \vec{J}$$

 electric quadrupole moment - deviation from spherical charge distribution

Introduction 00000000	Isotope shifts	HFS 0000000	Nuclear Polarization	Conclusions O
HFS				

Introduction	Isotope shifts	HFS 0000●00	Nuclear Polarization	Conclusions O

Laser spectroscopy

Hyperfine splitting for some heavy H-like ions

Introduction 00000000	Isotope shifts	HFS 00000●0	Nuclear Polarization	Conclusions O
DR very o	close to thresh	old		

- HFS of 4s_{1/2} and 4p_{1/2} in ²⁰⁷Pb⁵³⁺ (comparing to ²⁰⁸Pb⁵³⁺) very low-energy electron captured in Rydberg state!
 R. Schuch, E. Lindroth *et al.*, PRL **95**, 183003 (2005)
- HFS of 2s state in ⁴⁵Sc¹⁸⁺ using DR Rydberg resonances M. Lestinsky, E. Lindroth *et al.*, PRL **95**, 183003 (2005)

TRICKS: low-energy electron and Rydberg state!

• hyperfine induced transitions: $2s2p \ {}^{3}P_{0} \rightarrow 2s^{2} \ {}^{1}S_{0}$ in Be-like ${}^{47}Ti^{18+}$

S. Schippers et al., PRL 98, 033001 (2007)

Nuclear hyperfine mixing in ²²⁹Th

The lowest known excited nuclear state at only 8 eV in ²²⁹Th

In ²²⁹Th⁸⁹⁺ the very strong 28 MT magnetic field of the unpaired electron mixes F = 2 states

V. M. Shabaev et al., arXiv:2109.01642 [physics.atom-ph]

Introduction	Isotope shifts	HFS	Nuclear Polarization	Conclusions
			000	

Nuclear polarization

Introduction	Isotope shifts	HFS	Nuclear Polarization	Conclusions
00000000		0000000	O●O	O
What does	s this mean?			

Due to exchange of virtual photons, nucleus undergoes virtual transitions to excited states!

$$\Delta E \sim (E_n - E_a)^{-1}$$

Main theoretical challenge for high-precision tests of QED!

Introduction	Isotope shifts	HFS 0000000	Nuclear Polarization OO●	Conclusions O

Nuclear level schemes

 $^{208}_{\ 82} \mathrm{Pb}_{126}$

200 meV for K-shell electron

Introduction	Isotope shifts	HFS 0000000	Nuclear Polarization OO●	Conclusions O

Nuclear level schemes

200 meV for K-shell electron

three orders of magnitude smaller!

Introduction	Isotope shifts	HFS 0000000	Nuclear Polarization	Conclusions •

