Introduction	HFS 00000000	Nuclear Polarization	Nuclear processes involving electrons	NEEC 00000000	Conclusions

Electron-nucleus interactions and nuclear effects in atomic transitions

Adriana Pálffy adriana.palffy-buss@fau.de

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

EJC Oleron, October 2021

NATURWISSENSCHAFTLICHE FAKULTÄT

Bridging atomic and nuclear physics

- exploring nuclear properties via atomic physics experiments YESTERDAY and leftovers
- nuclear processes directly involving atomic electrons TODAY

AP, Contemporary Physics 51, 471 (2010)

The borderline between atomic and nuclear physics

Nuclear effects in atomic transitions

Introduction	HFS 00000000	Nuclear Polarization	Nuclear processes involving electrons	NEEC 00000000	Conclusions

Outline

- 2 HFS
- 3 Nuclear Polarization
- 4 Nuclear processes involving electrons
- 5 NEEC
- 6 IC

Introduction	HFS	Nuclear Polarization	Nuclear processes involving electrons	NEEC	IC	Conclusions
	00000000					

HFS

Introduction	HFS 0000000	Nuclear Polarization	Nuclear processes involving electrons	NEEC 00000000	IC 0000000000	Conclusions 000
HFS						

Splittings or shifts of fine structure levels due to the interaction of nuclear multipole moments with the electromagnetic field created by the electrons at the nucleus

magnetic dipole moment associated to spin

$$\vec{F} = \vec{I} + \vec{J}$$

 electric quadrupole moment - deviation from spherical charge distribution

Introduction	HFS 000●0000	Nuclear Polarization	Nuclear processes involving electrons	NEEC 00000000	Conclusions 000
HFS					

$$W(F) = \frac{A}{2}K + B \frac{\frac{3}{4}K(K+1) - I(I+1)J(J+1)}{2(2I-1)(2J-1)I \cdot J}$$
where $K = F(F+1) - I(I+1) - J(J+1)$

$$A = \frac{\mu_{I}H_{e}(0)}{I \cdot J},$$

$$H_{e}(0) = \text{magnetic field at site of nucleus}$$
- access to nuclear parameters I (number of lines) and μ_{I} (size of splitting)
$$B = eQ_{s}\varphi_{jj}(0),$$

$$\varphi_{jj}(0) = \text{electric field gradient at the site of the nucleus}$$
- access to spectroscopic quadrupole moment Q_{s}
- access to spectroscopic quadrupole moment Q_{s}

Laser spectroscopy

DR very close to threshold

- HFS of 4s_{1/2} and 4p_{1/2} in ²⁰⁷Pb⁵³⁺ (comparing to ²⁰⁸Pb⁵³⁺) very low-energy electron captured in Rydberg state!
 R. Schuch, E. Lindroth *et al.*, PRL **95**, 183003 (2005)
- HFS of 2s state in ⁴⁵Sc¹⁸⁺ using DR Rydberg resonances M. Lestinsky, E. Lindroth *et al.*, PRL **95**, 183003 (2005)

TRICKS: low-energy electron and Rydberg state!

• hyperfine induced transitions: $2s2p \ {}^{3}P_{0} \rightarrow 2s^{2} \ {}^{1}S_{0}$ in Be-like ${}^{47}Ti^{18+}$

S. Schippers et al., PRL 98, 033001 (2007)

Nuclear hyperfine mixing in ²²⁹Th

The lowest known excited nuclear state at only 8 eV in ²²⁹Th

In ²²⁹Th⁸⁹⁺ the very strong 28 MT magnetic field of the unpaired electron mixes F = 2 states

V. M. Shabaev et al., arXiv:2109.01642 [physics.atom-ph]

Introduction 000	HFS 0000000●	Nuclear Polarization	Nuclear processes involving electrons	NEEC 00000000	Conclusions
Discl	aimer				

So far the picture is not completely realistic!

To include:

- effect of extended nuclear charge distributions on magnetic interactions (Breit-Rosenthal correction)
- the nuclear dipole moment is not point-like, but the nuclear magnetization distribution should be considered (Bohr-Weisskopf correction)

Introduction	HFS	Nuclear Polarization	Nuclear processes involving electrons		Conclusions
		•000			

Nuclear polarization

Due to exchange of virtual photons, nucleus undergoes virtual transitions to excited states!

$$\Delta E \sim (E_n - E_a)^{-1}$$

Main theoretical challenge for high-precision tests of QED!

Nuclear level schemes

 $^{208}_{82}{\rm Pb}_{126}$

200 meV for K-shell electron

Nuclear level schemes

200 meV for K-shell electron

three orders of magnitude smaller!

Bridging atomic and nuclear physics

The borderline between atomic and nuclear physics

- exploring nuclear properties via atomic physics experiments
- nuclear processes directly involving atomic electrons
- AP, Contemporary Physics 51, 471 (2010)

Introduction	HFS	Nuclear Polarization	Nuclear processes involving electrons	NEEC	IC	Conclusions
			0000			

Nuclear processes involving electrons

Introduction	HFS	Nuclear Polarization	Nuclear processes involving electrons		Conclusions
			0000		

nuclear processes directly involving atomic electrons

- electron capture (EC) + bound beta decay

 $p + e_b
ightarrow n +
u_e$ $n
ightarrow p + e_b + ilde{
u}_e$

- bound beta decay

VOLUME 77, NUMBER 26 PHYSICAL REVIEW LETTERS 23 DECEMBER 1996

Observation of Bound-State β⁻ Decay of Fully Ionized ¹⁸⁷Re: ¹⁸⁷Re-¹⁸⁷Os Cosmochronometry

F. Bosch,¹ T. Faestermann,² J. Friese,² F. Heine,² P. Kienle,² E. Wefers,² K. Zeitelhack,² K. Beckert,¹ B. Franzke,¹ O. Klepper,¹ C. Kozhuharov,¹ G. Merzel,¹ R. Moshammer,¹ F. Nolden,¹ H. Reich,¹ B. Schlitt,¹ M. Steck,¹ T. Stöhlker,¹ T. Winker,¹ and K. Takatashi²⁻¹ ¹Geselfschaff für Schweinenenforchung mbH, Plenckstraße I. D-64291 Dominata, Germany ²Physik Dependment E12, Technick Universitä Manken, James-France-Surgle, D-38748 Garching, Germany ³Max-Planck-Institut für Astrophysik, Karl-Schwarzschüld-Straße I. D-85748 Garching, Germany (Received 2) Steenther 1990

Introduction	HFS	Nuclear Polarization	Nuclear processes involving electrons			Conclusions
	00000000	0000	0000	00000000	0000000000	

nuclear processes directly involving atomic electrons

internal conversion (IC) + inverse process nuclear excitation by electron capture (NEEC)

Introduction	HFS	Nuclear Polarization	Nuclear processes involving electrons			Conclusions
	00000000	0000	0000	00000000	0000000000	

nuclear processes directly involving atomic electrons

internal conversion (IC) + inverse process nuclear excitation by electron capture (NEEC) chronologically, IC - 1924, NEEC - 1976

Introduction	HFS	Nuclear Polarization	Nuclear processes involving electrons		Conclusions
			000		

nuclear processes directly involving atomic electrons

bound internal conversion (BIC) + inverse process nuclear excitation by electron transition (NEET)

Introduction	HFS	Nuclear Polarization	Nuclear processes involving electrons	NEEC	IC	Conclusions
				•0000000		

NEEC

Introduction	HFS	Nuclear Polarization	Nuclear processes involving electrons	NEEC		Conclusions
000	00000000	0000	0000	0000000	0000000000	000

- direct process
- any electron energy
- electron-radiation field

Introduction	HFS	Nuclear Polarization	Nuclear processes involving electrons	NEEC		Conclusions
000	00000000	0000	0000	0000000	0000000000	000

- direct process
- any electron energy
- electron-radiation field

Introduction	HFS	Nuclear Polarization	Nuclear processes involving electrons	NEEC		Conclusions
000	00000000	0000	0000	0000000	0000000000	000

- direct process
- any electron energy
- electron-radiation field

Introduction	HFS	Nuclear Polarization	Nuclear processes involving electrons	NEEC		Conclusions
000	00000000	0000	0000	0000000	0000000000	000

- direct process
- any electron energy
- electron-radiation field

Introduction	HFS	Nuclear Polarization	Nuclear processes involving electrons	NEEC		Conclusions
000	00000000	0000	0000	0000000	0000000000	000

- direct process
- any electron energy
- electron-radiation field

Introduction	HFS	Nuclear Polarization	Nuclear processes involving electrons	NEEC		Conclusions
000	00000000	0000	0000	0000000	0000000000	000

- direct process
- any electron energy
- electron-radiation field

Introduction	HFS	Nuclear Polarization	Nuclear processes involving electrons	NEEC		Conclusions
000	00000000	0000	0000	0000000	0000000000	000

- direct process
- any electron energy
- electron-radiation field

Introduction	HFS	Nuclear Polarization	Nuclear processes involving electrons	NEEC		Conclusions
000	00000000	0000	0000	0000000	0000000000	000

- direct process
- any electron energy
- electron-radiation field

- resonant process
- Coulomb interaction
- Breit interaction

Introduction	HFS	Nuclear Polarization	Nuclear processes involving electrons	NEEC		Conclusions
000	00000000	0000	0000	0000000	0000000000	000

- direct process
- any electron energy
- electron-radiation field

- resonant process
- Coulomb interaction
- Breit interaction

Introduction	HFS	Nuclear Polarization	Nuclear processes involving electrons	NEEC		Conclusions
000	00000000	0000	0000	0000000	0000000000	000

- direct process
- any electron energy
- electron-radiation field

- resonant process
- Coulomb interaction
- Breit interaction

Introduction	HFS	Nuclear Polarization	Nuclear processes involving electrons	NEEC		Conclusions
000	00000000	0000	0000	0000000	0000000000	000

- direct process
- any electron energy
- electron-radiation field

- resonant process
- Coulomb interaction
- Breit interaction

Introduction	HFS	Nuclear Polarization	Nuclear processes involving electrons	NEEC		Conclusions
000	00000000	0000	0000	0000000	0000000000	000

- direct process
- any electron energy
- electron-radiation field

- resonant process
- Coulomb interaction
- Breit interaction

Introduction	HFS	Nuclear Polarization	Nuclear processes involving electrons	NEEC		Conclusions
000	00000000	0000	0000	0000000	0000000000	000

- direct process
- any electron energy
- electron-radiation field

- resonant process
- Coulomb interaction
- Breit interaction
| Introduction | HFS | Nuclear Polarization | Nuclear processes involving electrons | NEEC | | Conclusions |
|--------------|----------|----------------------|---------------------------------------|---------|------------|-------------|
| 000 | 00000000 | 0000 | 0000 | 0000000 | 0000000000 | 000 |

Electron recombination processes

RR

- direct process
- any electron energy
- electron-radiation field

- resonant process
- Coulomb interaction
- Breit interaction

Introduction	HFS	Nuclear Polarization	Nuclear processes involving electrons	NEEC		Conclusions
000	00000000	0000	0000	0000000	0000000000	000

Electron recombination processes

RR

- direct process
- any electron energy
- electron-radiation field

- resonant process
- Coulomb interaction
- Breit interaction

Electron recombination processes

- direct process
- any electron energy
- electron-radiation field

- resonant process
- Coulomb interaction
- Breit interaction

- resonant process
- Coulomb interaction
- current-current interaction

Electron recombination processes

- direct process
- any electron energy
- electron-radiation field

- resonant process
- Coulomb interaction
- Breit interaction

NEEC

Conclusions

- resonant process
- Coulomb interaction
- current-current interaction

Electron recombination processes

- direct process
- any electron energy
- electron-radiation field

- resonant process
- Coulomb interaction
- Breit interaction

- resonant process
- Coulomb interaction
- current-current interaction

Electron recombination processes

- direct process
- any electron energy
- electron-radiation field

- resonant process
- Coulomb interaction
- Breit interaction

- resonant process
- Coulomb interaction
- current-current interaction

Electron recombination processes

- direct process
- any electron energy
- electron-radiation field

- resonant process
- Coulomb interaction
- Breit interaction

NEEC

Conclusions

- resonant process
- Coulomb interaction
- current-current interaction

Electron recombination processes

- direct process
- any electron energy
- electron-radiation field

- resonant process
- Coulomb interaction
- Breit interaction

NEEC

Conclusions

- resonant process
- Coulomb interaction
- current-current interaction

Electron recombination processes

- direct process
- any electron energy
- electron-radiation field

- resonant process
- Coulomb interaction
- Breit interaction

- resonant process
- Coulomb interaction
- current-current interaction

Electron recombination processes

- direct process
- any electron energy
- electron-radiation field

- resonant process
- Coulomb interaction
- Breit interaction

- resonant process
- Coulomb interaction
- current-current interaction

Electron recombination processes

- direct process
- any electron energy
- electron-radiation field

- resonant process
- Coulomb interaction
- Breit interaction

- resonant process
- Coulomb interaction
- current-current interaction

Total NEEC cross section

NEEC + γ total cross section as function of continuum electron energy

$$\sigma(E) = \frac{2\pi^2}{p^2} \frac{A_{\gamma}^{d \to f} Y_n^{i \to d}}{\Gamma_d} L_d(E - E_d)$$

natural width $\Gamma_d \sim 10^{-5} - 10^{-8} \text{ eV}$ resonance strength $S \sim 1 \text{ b eV}$

Pálffy, Scheid, Harman, PRA 73 (2006) 012715

Continuum electrons have a narrow resonance condition to fulfill!

Total NEEC cross section

NEEC + γ total cross section as function of continuum electron energy

$$S = \frac{2\pi^2}{p^2} \frac{A_{\gamma}^{d \to f} Y_n^{i \to d}}{\Gamma_d}$$

natural width
$$\Gamma_d \sim 10^{-5} - 10^{-8} \text{ eV}$$

resonance strength $S \sim 1 \text{ b eV}$

Pálffy, Scheid, Harman, PRA 73 (2006) 012715

Continuum electrons have a narrow resonance condition to fulfill!

Introduction	HFS 00000000	Nuclear Polarization	Nuclear processes involving electrons	NEEC 00000●00	Conclusions 000

Interaction mechanisms

• Coulomb interaction (E transitions)

$$\mathcal{H}_{en} = \int d^3 r_n rac{
ho_n(ec{r}_n)}{ec{r}_e - ec{r}_n ec{r}_n}$$

• Virtual photon exchange (M transitions)

$$\mathcal{H}_{magn} = -rac{1}{c}ec{lpha}\int d^3r_nrac{ec{j}_n(ec{r}_n)}{ec{r}-ec{r}_nec{}}$$

Matrix elements:

- nuclear via reduced transition probability B(E/ML)
- electronic wavefunctions via GRASP92 for bound electrons Dirac equation with effective charge for continuum electrons.

Introduction	HFS 00000000	Nuclear Polarization	Nuclear processes involving electrons	NEEC 000000●0	Conclusions
NEE	C in iso	omers			

• excitation mechanism via gateway state above the isomer

Isomer depletion

Pálffy, Evers, Keitel, Phys. Rev. Lett. 99, 172502 (2007) Gunst, Litvinov, Keitel, Pálffy, Phys. Rev. Lett. 112, 082501 (2014)

NEEC in a beam-target scenario

· First experimental evidence of NEEC was reported in a beam-target scenario

• Depletion probability $P_{exc} = 0.01$ per ^{93m}Mo was reported

C. J. Chiara et al., Nature, 554, 216 (2018)

- Observed excitation probability was attributed to NEEC process
- A theoretical analysis of NEEC rates for the experimental setting reports $P_{exc} = 10^{-11}!$ Wu, Keitel, Pálfty, Phys. Rev. Lett. 122, 212501 (2019)
- Debate is still in progress.

Introduction	HFS	Nuclear Polarization	Nuclear processes involving electrons	NEEC	IC	Conclusions
					●000000000	

IC

Introduction	HFS	Nuclear Polarization	Nuclear processes involving electrons	IC	Conclusions
				000000000	

Inverse process of NEEC

Fermi's golden rule

$$\Gamma_{\rm IC} = \frac{2\pi}{N_{\rm init}} \sum_{\rm init.states} \sum_{\rm fin.states} \left| \langle \Psi_{\rm fin} | \, \hat{H} \, | \Psi_{\rm init} \rangle \right|^2 \rho_{\rm fin}$$

The same Hamilton operators as for NEEC, \hat{H}_{en} or \hat{H}_{magn} .

IC coefficient
$$\alpha = \frac{\Gamma_{IC}}{\gamma$$
-decay rate

Introduction	HFS 00000000	Nuclear Polarization	Nuclear processes involving electrons	NEEC 00000000	IC 00●0000000	Conclusions

IC for ²²⁹Th

Unique nuclear isomer with $E_m = 8.2 \text{ eV}$

- M1 transition at $E \simeq 10 \text{ eV}$ γ -decay rate $\propto E^3$ is small $\Rightarrow \alpha$ is large
- In neutral atoms α ≃ 10⁹
 F. F. Karpeshin *et al.* PRC 76, 054313 (2007)

lon charge	0	1+	2+	3+	4+
Ion. threshold (eV)	6.3	12.1	20.0	28.7	58

Introduction 000	HFS 00000000	Nuclear Polarization	Nuclear processes involving electrons	NEEC 00000000	IC 000€000000	Conclusions

Isomer energy

 $E_m = 8.28 \pm 0.17 \text{ eV}$ by IC electron spectroscopy

Cover image: Daria Bilous

- LMU Munich Benedict Seiferle, Lars von der Wense, Ines Amersdorffer, Peter G. Thirolf
- MPIK Pavlo V. Bilous, Adriana Pálffy
- TU Wien Christoph Lemell, Florian Libisch, Thorsten Schumm
- Uni Bonn Simon Stellmer
- Uni Mainz Christoph E. Düllmann
- B. Seiferle et al., Nature 573, 243 (2019)

Experimental setup at LMU Munich

Step 1: Generation of Th ions in the isomeric state

Step 2: Th neutralization and collecting of IC electrons

Step 3: Measurement of the IC electron energies

Step 3: Measurement of the IC electron energies

IC at low energies

- initial excited electronic states
- all possible final excited electronic state of ion
- angular momenta couplings in the electronic shells

 $egin{aligned} f(U) &= a \left\{ 1 - ext{erf} \left[rac{U - E_{ ext{defl}}}{b}
ight]
ight\} \ E_{ ext{defl}} &= 1.77 \pm 0.03 ext{ eV} \ E_{ ext{m}} &= E_0 + E_{ ext{defl}} \end{aligned}$

 $E_m = 8.28 \pm 0.17 \text{ eV}$

Introduction	HFS 00000000	Nuclear Polarization	Nuclear processes involving electrons	NEEC 00000000	Conclusions ●OO

Summarizing

- high-precision atomic physics reveals information about nucleus
- theory challenge to separate the respective contributions from nuclear mass, volume, shape, spin, magnetization, and polarization

- especially low-energy nuclear transitions have a strong interplay with the atomic shell
- exotic examples: isomer depletion or nuclear clock

Introduction 000	HFS 00000000	Nuclear Polarization	Nuclear processes involving electrons	NEEC 00000000	Conclusions O●O

Introduction 000	HFS 00000000	Nuclear Polarization	Nuclear processes involving electrons	NEEC 00000000	Conclusions O●O

Introduction 000	HFS 00000000	Nuclear Polarization	Nuclear processes involving electrons	NEEC 00000000	Conclusions O●O

Introduction	HFS	Nuclear Polarization	Nuclear processes involving electrons	NEEC	IC	Conclusions
						000

Thank you!